OFDM
Relay
Cognitive Radio
Multiple Antennas
Resource Allocation
Full Duplex
Spectrum Sensing
Synchronization
Spectrum Sharing
Interference Cancellation
Channel Estimation
Feedback
Heterogeneous Networks
Bi-directional
Energy Harvesting
Stochastic Geometry
HetNet
relay networks
FBMC
Equalization
channel capacity
TVWS
CDMA
interference
in-band full-duplex system
Duplex
MIMO
Ultra Low Power
C-V2V
5G
Reliability
SC-FDMA
interference suppression
D-TDD
CLI
indoor positioning
reinforcement learning
RSRP weighting
- Computation offloading
smart factory
Cell-free
multi-access edge computing
estimated position overlapping
—Device-to-device (D2D)
estimated position updating
mMIMO
control overhead
hybrid
NR positioning
Femtocell
Rat-dependent positioning
frame structure
Zigbee
body area networks
channel estimation error
Handoff
CoMP
User grouping
power uncertainty
ultra-dense small cell network
mode selection
antenna arrays
5G mobile communication
UFMC
resource block management
inter user interference
WVAN
health care
partial overlap
GFDM
Dynamic TDD
Multi-user Receiver
Number of training blocks
Uplink SCMA system
V2X
Vehicular communication
cross-link interference
LTE-TDD
FS-NOMA
Location-based
user fairness
Mode 3
QR Factorization
Metaheuristics
P-NOMA
non-orthogonal multiple access
dynamic HetNet
spectrum partitioning
and 5G networks.
massive connectivity
non-orthogonal multiple access (NOMA)
overloading
DQN
OTDOA
distributed mode
Communication range
resource selection
maximum likelihood method
Resource sharing
Power allocation
packet delay
Hyunjin Kim, Hyejin Kim, Jintae Kim, and Daesik Hong, "A Novel Spectrum Partitioning Scheme for Dynamic Heterogeneous Networks" IEEE VTC Spring 2021
[IEEE VTC]
조회 53601
Status : | Presented |
---|---|
Date : | 2021-02 |
Title : | A Novel Spectrum Partitioning Scheme for Dynamic Heterogeneous Networks |
Authors : | Hyunjin Kim, Hyejin Kim, Jintae Kim, and Daesik Hong |
Conference : | IEEE VTC Spring 2021 |
Abstract : | Dynamic heterogeneous networks (HetNets) in which small cells operate in dynamic time division duplex (DTDD) systems enable the instantaneous traffic load to be handled with greater spectral efficiency than conventional HetNets. However, combining HetNets and D-TDD systems causes cross-link interference (CLI) both within the same tier and across tiers, negatively impacting system performance. In this paper, we point out that small cells are underprivileged in terms of interference mitigation under the conventional spectrum partitioning usage. Accordingly, we propose employing a novel spectrum partitioning scheme that brings up interference scenarios where we can take advantage of multiple-input multiple-output (MIMO) compatibility from macro base stations. Simulation results show that the proposed spectrum usage in combination with general MIMO schemes achieves significant performance enhancement in terms of small cell capacity at the cost of a relatively small degradation in macro cell capacity. |
.
Related Publications
카테고리
- 전체(260)
- [ICNN] (3)
- [ICEIC] (15)
- [ITC-CSCC] (12)
- [JTC-CSCC] (3)
- [IEEE ICASSP] (10)
- [IEEE ICC] (22)
- [IEEE ICCE] (1)
- [IEEE ICCS] (3)
- [IEEE ICOIN] (3)
- [IEEE ICONIP] (2)
- [IEEE IJCNN] (9)
- [IEEE INTERMAG] (8)
- [IEEE ISIT] (1)
- [IEEE GLOBECOM] (21)
- [IEEE MILCOM] (11)
- [IEEE PIMRC] (17)
- [IEEE VTC] (73)
- [IEEE WCNC] (8)
- [IEEE TENCON] (1)
- [IEEE CNCC] (1)
- [Other Conf. Papers] (36)