OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Channel Estimation Interference Cancellation Stochastic Geometry Energy Harvesting Feedback Bi-directional Heterogeneous Networks Equalization HetNet relay networks FBMC Ultra Low Power SC-FDMA TVWS Duplex Reliability CDMA MIMO interference channel capacity in-band full-duplex system interference suppression 5G C-V2V reinforcement learning RSRP weighting non-orthogonal multiple access (NOMA) health care 5G mobile communication indoor positioning Vehicle-to-vehicle communication estimated position overlapping Resource sharing Power allocation multi-access edge computing control overhead hybrid Rat-dependent positioning NR positioning smart factory UFMC Handoff Femtocell QAM CoMP power uncertainty - Computation offloading amplify and forward communication Zigbee body area networks resource block management frame structure WVAN inter user interference GFDM mode selection antenna arrays partial overlap LTE-based V2V resource selection maximum likelihood method Communication range Number of training blocks Vehicular communication Uplink SCMA system Dynamic TDD QR Factorization Metaheuristics FS-NOMA cross-link interference user fairness Multi-user Receiver Mode 3 V2X P-NOMA dynamic HetNet spectrum partitioning DQN D-TDD CLI massive connectivity and 5G networks. OTDOA estimated position updating distributed mode non-orthogonal multiple access Spatial capacity LTE-TDD —Device-to-device (D2D) Location-based overloading
Status : Presented 
Date : 2010-05 
Title : Non-handover Based Mobility Management in Hierarchically Structured Cellular Networks 
Authors : Hyungsik Ju, Seokwon Lee, Daesik Hong, Kiyoung Han, Jaeho Jeon 
Conference : CNSR 2010 
Abstract : Hierarchical cell structure (HCS) is considered as a possible solution to support users in shadowing area or hot zone area. In HCS systems, both co-channel interference and mobility management are the most important problems. In this paper, we propose a new mobility management method that efficiently preserves the data rate of the mobile user passing small overlaid cell area. In the proposed method, handover is not used when the mobile user passes the overlaid cell area. Therefore, it is not affected by ping-pong and handover overhead. Instead, specific channel utilization is used to prevent co-channel interference and to guarantee quality of service in common channel. We show the procedure of the proposed mobility management method, and channel utilization in this method. We also evaluate the rate regions where the proposed method can support higher data rate than handover based method. System level simulation based on IEEE 802.16m system shows that the proposed method is more efficient in HCS system than handover-based method. 
URL : http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5489412 
Download : http://mirinae.yonsei.ac.kr/?module=file...5391f078be 

Ju, Hyungsik; Lee, Seokwon; Hong, Daesik; Han, Kiyoung; Jeon, Jaeho; , "Non-handover Based Mobility Management in Hierarchically Structured Cellular Networks," Communication Networks and Services Research Conference (CNSR), 2010 Eighth Annual , vol., no., pp.369-375, 11-14 May 2010
doi: 10.1109/CNSR.2010.17
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5489412&isnumber=5489315

List of Articles
Statussort Date
4 [ITC-CSCC] Kwonjong Lee, Jihaeng Heo, Yosub Park, and Daesik Hong,"A New Dynamic CoMP Based on User Location in Downlink Small Cell Networks", ITC-CSCC, July 2013 file Presented  2013-07 
3 [ICEIC] Dongkyu Kim, Hano Wang, and Daesik Hong, "On the Feasibility of a Overlay Cellular System for Future Military Networks," ICEIC2012, Feb. 2012 file Presented  2012-02 
» [Other Conf. Papers] Hyungsik Ju, Seokwon Lee, Daesik Hong, Kiyoung Han, Jaeho Jeon, "Non-handover Based Mobility Management in Hierarchically Structured Cellular Networks", CNSR 2010, May 2010 file Presented  2010-05 
1 [IEEE VTC] Hano Wang, Daesik Hong, "Capacity Enhancement of Femto-cell Using Reversed-Pair Frame Structure in OFDMA Systems", IEEE VTC, Sep. 2009 file Presented  2009-09