OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Channel Estimation Interference Cancellation Stochastic Geometry Energy Harvesting Feedback Bi-directional Heterogeneous Networks Equalization HetNet relay networks FBMC Ultra Low Power SC-FDMA TVWS Duplex Reliability CDMA MIMO interference channel capacity in-band full-duplex system interference suppression 5G C-V2V reinforcement learning RSRP weighting and 5G networks. health care 5G mobile communication indoor positioning Vehicle-to-vehicle communication estimated position overlapping Resource sharing Power allocation multi-access edge computing control overhead hybrid Rat-dependent positioning NR positioning smart factory UFMC Handoff Femtocell QAM CoMP power uncertainty - Computation offloading amplify and forward communication Zigbee body area networks resource block management frame structure WVAN inter user interference GFDM mode selection antenna arrays partial overlap LTE-based V2V resource selection maximum likelihood method Communication range Number of training blocks Vehicular communication Uplink SCMA system Dynamic TDD QR Factorization Metaheuristics FS-NOMA cross-link interference user fairness Multi-user Receiver Mode 3 V2X P-NOMA dynamic HetNet spectrum partitioning DQN D-TDD CLI overloading non-orthogonal multiple access (NOMA) OTDOA estimated position updating distributed mode non-orthogonal multiple access Spatial capacity LTE-TDD —Device-to-device (D2D) Location-based massive connectivity
Status : Presented 
Date : 2016-08 
Title : Interference Cancellation Architecture for Full-Duplex System with GFDM Signaling 
Authors : Wonsuk Chung, Taneli Riihonen, Risto Wichman, and Daesik Hong 
Conference : EUSIPCO 
Abstract : This paper concerns the design of in-band fullduplex transceivers that employ generalized frequency-division multiplexing (GFDM). The composite of these two timely concepts is a promising candidate technology for emerging 5G systems since the GFDM waveform is advantageous to flexible spectrum use whereas full-duplex operation can significantly improve spectral efficiency. The main technical challenge in fullduplex transceivers at large is to mitigate their inherent selfinterference due to simultaneous transmission and reception. In the case of GFDM that is non-orthogonal by design, interference cancellation becomes even more challenging since the interfering signal is subject to intricate coupling between all subchannels. Thus, we first develop a sophisticated frequency-domain cancellation architecture for removing all the self-interference components. Furthermore, by exploiting the specific structure of the interference pattern, we further modify the scheme into one that allows flexible control and reduction of computational complexity. Finally, our simulation results illustrate the trade-off
between cancellation performance and system complexity, giving insights into the implementation of interference cancellation when we aim at achieving both low error rate and low complexity. 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=343 

.

List of Articles
No.
Status Datesort
» [Other Conf. Papers] Wonsuk Chung, Taneli Riihonen, Risto Wichman, and Daesik Hong, "Interference Cancellation Architecture for Full-Duplex System with GFDM Signaling," EUSIPCO 2016 file Presented  2016-08