OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Interference Cancellation Channel Estimation Feedback Stochastic Geometry Bi-directional Energy Harvesting Heterogeneous Networks FBMC HetNet Equalization relay networks Ultra Low Power TVWS MIMO interference SC-FDMA CDMA Duplex channel capacity interference suppression 5G Reliability C-V2V in-band full-duplex system OCBT CLI body area networks 5G mobile communication antenna arrays NR positioning health care Resource sharing Location-based LTE-TDD FS-NOMA Power allocation OTDOA hybrid control overhead estimated position overlapping resource block management amplify and forward communication power uncertainty CoMP quality of service cellular radio Rat-dependent positioning telecommunication traffic Handoff Femtocell inter user interference UFMC mode selection GFDM QAM Zigbee frame structure Vehicular communication Vehicle-to-vehicle communication non-orthogonal multiple access QR Factorization Spatial capacity LTE-based V2V Number of training blocks Communication range user fairness Mode 3 resource selection distributed mode maximum likelihood method Metaheuristics cross-link interference Dynamic TDD Uplink SCMA system V2X DQN estimated position updating —Device-to-device (D2D) spectrum partitioning dynamic HetNet indoor positioning D-TDD - Computation offloading multi-access edge computing P-NOMA partial overlap Subband filtering Multi-user Receiver reinforcement learning RSRP weighting smart factory
Status : Presented 
Date : 2016-07 
Title : Inter-Cell Interference Suppression at Wireless Vehicle Access Networks with Distributed Subcarrier Mapped OFDM 
Authors : Garam Yu, Haesoon Lee, Joonki Kim, and Daesik Hong 
Conference : ITC-CSCC 
Abstract : In the wireless vehicle access networks (WVAN), the inter-cell interference (ICI) is the main barrier of the stable and fast vehicular communication services. We propose a ICI suppression technique by using the Distributed Subcarrier Mapped Orthogonal Freqeuncy Division Multiplexing (DS-OFDM) for WVAN. Compared to the Localized Subcarrier Mapped OFDM (LS-OFDM), DS-OFDM has a merit of reducing the intensity of inter-cell interference in fast moving vehicle circumstances thanks to Doppler spreading effect. Numerical results show that DS-OFDM outperforms LS-OFDM in terms of outage probability espeically when we set the threshold SINR lower than the average of SINR. 

.

List of Articles
No.
Status Datesort
» [ITC-CSCC] Garam Yu, Haesoon Lee, Joonki Kim, and Daesik Hong, "Inter-Cell Interference Suppression at Wireless Vehicle Access Networks with Distributed Subcarrier Mapped OFDM," ITC-CSCC 2016 file Presented  2016-07