Full Duplex HetNet FBMC relay networks Channel Estimation Interference Cancellation interference channel capacity MIMO CLI synchronization interference suppression in-band full-duplex system D-TDD 5G Multiple Antennas inter user interference OFDM mode selection WVAN channel estimation error UFMC 5G mobile communication timing misalignment ultra-dense small cell network GFDM reinforcement learning multi-access edge computing health care RSRP weighting - Computation offloading —Device-to-device (D2D) antenna arrays power uncertainty resource block management frame structure QAM Poisson arrival Short burst transmission mMTC User association Traffic Capacity OCBT Waveforms Time-division duplex self interference cancellation body area networks cellular radio quality of service amplify and forward communication Cognitive radio telecommunication traffic intercarrier interference Zigbee indoor positioning intersymbol interference spectrum sharing Cell-free Uplink SCMA system Number of training blocks Reliability Communication range Mode 3 resource allocation P-NOMA partial overlap Vehicular communication resource selection maximum likelihood method V2X user fairness cross-link interference Dynamic TDD LTE-TDD Metaheuristics QR Factorization Multi-user Receiver FS-NOMA non-orthogonal multiple access C-V2V OTDOA mMIMO User grouping packet delay estimated position updating Resource sharing Rat-dependent positioning NR positioning estimated position overlapping non-orthogonal multiple access (NOMA) overloading Power allocation Location-based distributed mode DQN spectrum partitioning massive connectivity and 5G networks. dynamic HetNet smart factory
Status : Presented 
Date : 2022-01 
Title : Performance of 5G Multiple Access Schemes 
Authors : Hanwoong Kim, Hyunsoo Kim, and Daesik Hong 
Conference : ICEIC 
Abstract : Next generation wireless networks require massive uplink connections as well as high spectral efficiency. It is well known that, theoretically, it is not possible to achieve the sum capacity of multi-user communications with orthogonal multiple access. To meet the challenging requirements of next generation networks, researchers have explored non-orthogonal and overloaded transmission technologies–known as new radio multiple access (NR-MA) for fifth generation (5G) networks. In this article, we discuss the key features of the promising NRMA schemes for the massive uplink connections. The candidate schemes of NR-MA can be characterized by multiple access signatures (MA-signatures), such as codebook, sequence, and interleaver/scrambler. At the receiver side, advanced multiuser detection (MUD) schemes are employed to extract each user’s data from non-orthogonally superposed data according to MAsignatures. Through link-level simulations, we compare the performances of NR-MA candidates under the same conditions. 
URL : https://ieeexplore.ieee.org/document/9748540 

.

List of Articles
No.
Status Datesort
» [ICEIC] Hanwoong Kim, Hyunsoo Kim, and Daesik Hong, "Performance of 5G Multiple Access Schemes" ICEIC 2022 Presented  2022-01