OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Channel Estimation Interference Cancellation Energy Harvesting Stochastic Geometry Feedback Heterogeneous Networks Bi-directional relay networks FBMC Equalization channel capacity Duplex SC-FDMA Ultra Low Power TVWS CDMA in-band full-duplex system 5G C-V2V Reliability HetNet interference suppression interference frame structure 5G mobile communication antenna arrays Handoff health care intercarrier interference intersymbol interference UFMC Femtocell cross-link interference Dynamic TDD user fairness hybrid Zigbee QAM body area networks CFO Empty cell On/off algorithm Ultra-dense small cell System level simulation SCMA maximum likelihood method MPA detector Timing and frequency offset inter user interference quality of service amplify and forward communication power uncertainty cellular radio telecommunication traffic WVAN resource block management CoMP V2X Traffic Poisson arrival Subband filtering mMTC Capacity Time-division duplex Short burst transmission Vehicle-to-vehicle communication Spatial capacity OCBT Number of training blocks Communication range LTE-based V2V Vehicular communication Uplink SCMA system Power control Waveforms Multi-user Receiver Metaheuristics control overhead Mode 3 P-NOMA distributed mode non-orthogonal multiple access Location-based Power allocation FS-NOMA partial overlap QR Factorization LTE-TDD Resource sharing —Device-to-device (D2D) resource selection
Status : Presented 
Date : 2015-06 
Title : A New Frame Structure for Asynchronous In-band Full-duplex Systems 
Authors : Jaeyoung Choi, Dongkyu Kim, Seokwon Lee, Haesoon Lee, Jonghyun Bang, and Daesik Hong 
Conference : IEEE PIMRC 2015 
Abstract : Abstract—In in-band full-duplex employing conventional frame structure, pilot contamination is inevitable due to asynchronism between the nodes. Asynchronism can occur for several reasons such as propagation delay and synchronization error. Pilot contamination increases channel estimation error for both the desired and self-interference channels. We propose a new frame structure that avoids interference during pilot transmission. The proposed frame structure utilizes maximum time offset information in order to cover all the possible time offsets. We then derive the mean square error (MSE) of the channel estimation when the proposed frame structure is employed. Furthermore, based on the MSE analysis, we deliver superior conditions for the proposed frame structure compared to the conventional one. Finally, we show that sacrificing pilot length to avoid interference during pilot transmission guarantees channel estimation performance when the power of the interference is large. 
URL : http://ieeexplore.ieee.org/xpl/articleDe...earch=true 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=343 

Choi, Jaeyoung; Kim, Dongkyu; Lee, Seokwon; Lee, Haesoon; Bang, Jonghyun; Hong, Daesik, "A new frame structure for asynchronous in-band full-duplex systems," in Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on , vol., no., pp.487-491, Aug. 30 2015-Sept. 2 2015
doi: 10.1109/PIMRC.2015.7343348
keywords: {Channel estimation;High definition video;Interference;Signal to noise ratio;Silicon;Synchronization;Training;channel estimation;frame structure;in-band full-duplex system},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7343348&isnumber=7343254

List of Articles
No.
Status Datesort
2 [Other Conf. Papers] Jaeyoung Choi, Haesoon Lee, and Daesik Hong, "Effect of Timing Misalignment on In-band Full-duplex Communications", IEEE ICCE-Asia, 2016 file Presented  2016-10 
» [IEEE PIMRC] Jaeyoung Choi, Dongkyu Kim, Seokwon Lee, Haesoon Lee, Jonghyun Bang, and Daesik Hong, "A New Frame Structure for Asynchronous In-band Full-duplex Systems," IEEE PIMRC 2015 file Presented  2015-06