OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Interference Cancellation Channel Estimation Feedback Heterogeneous Networks Bi-directional Energy Harvesting Stochastic Geometry HetNet relay networks FBMC Equalization channel capacity TVWS CDMA interference in-band full-duplex system Duplex MIMO Ultra Low Power C-V2V 5G Reliability SC-FDMA interference suppression D-TDD CLI indoor positioning reinforcement learning RSRP weighting - Computation offloading smart factory Cell-free multi-access edge computing estimated position overlapping —Device-to-device (D2D) estimated position updating mMIMO control overhead hybrid NR positioning Femtocell Rat-dependent positioning frame structure Zigbee body area networks channel estimation error Handoff CoMP User grouping power uncertainty ultra-dense small cell network mode selection antenna arrays 5G mobile communication UFMC resource block management inter user interference WVAN health care partial overlap GFDM Dynamic TDD Multi-user Receiver Number of training blocks Uplink SCMA system V2X Vehicular communication cross-link interference LTE-TDD FS-NOMA Location-based user fairness Mode 3 QR Factorization Metaheuristics P-NOMA non-orthogonal multiple access dynamic HetNet spectrum partitioning and 5G networks. massive connectivity non-orthogonal multiple access (NOMA) overloading DQN OTDOA distributed mode Communication range resource selection maximum likelihood method Resource sharing Power allocation packet delay
Status : Presented 
Date : 2019-07 
Title : Partial Non-Orthogonal Multiple Access (P-NOMA) with respect to User Fairness 
Authors : Beomju Kim, Jehyun Heo, and Daesik Hong 
Conference : IEEE VTC Fall workshop 2019 
Abstract : In this paper, we consider the user fairness in partial non-orthogonal multiple access (P-NOMA) system which was proposed in our previous work [1]. In the P-NOMA system, the interference of NOMA can be managed by adjusting the overlap ratio between users. In our previous works, we considered the enhancement of sum of achievable rate. In this paper, we investigate the performance of P-NOMA in terms of user fairness. For reflecting user fairness on P-NOMA systems, we first define the metric to represent user fairness and then observe the target performance metric according to overlap ratio. In addition, we propose a feasible operating method to achieve the user fairness. 


List of Articles
Status Datesort
2 [ICEIC] Hanwoong Kim, Hyunsoo Kim, and Daesik Hong, "Performance of 5G Multiple Access Schemes" ICEIC 2022 Presented  2022-01 
» [IEEE VTC] Beomju Kim, Jehyun Heo, and Daesik Hong, "Partial Non-Orthogonal Multiple Access (P-NOMA) with respect to User Fairness," IEEE VTC Fall workshop 2019 Presented  2019-07