OFDM
Relay
Cognitive Radio
Multiple Antennas
Resource Allocation
Full Duplex
Spectrum Sensing
Synchronization
Spectrum Sharing
Channel Estimation
Interference Cancellation
Heterogeneous Networks
Stochastic Geometry
Bi-directional
Energy Harvesting
Feedback
relay networks
FBMC
Equalization
Duplex
TVWS
Ultra Low Power
interference
SC-FDMA
CDMA
in-band full-duplex system
channel capacity
Reliability
5G
interference suppression
HetNet
C-V2V
health care
—Device-to-device (D2D)
body area networks
UFMC
hybrid
frame structure
antenna arrays
5G mobile communication
Location-based
Multi-user Receiver
QR Factorization
FS-NOMA
LTE-TDD
Resource sharing
Power allocation
control overhead
GFDM
cellular radio
quality of service
amplify and forward communication
telecommunication traffic
intercarrier interference
Metaheuristics
mode selection
power uncertainty
CoMP
Zigbee
inter user interference
WVAN
QAM
intersymbol interference
Handoff
Femtocell
resource block management
Uplink SCMA system
Subband filtering
Vehicle-to-vehicle communication
Time-division duplex
Spatial capacity
LTE-based V2V
OCBT
Communication range
V2X
partial overlap
distributed mode
resource selection
maximum likelihood method
non-orthogonal multiple access
P-NOMA
Dynamic TDD
Number of training blocks
Waveforms
reinforcement learning
OTDOA
estimated position updating
multi-access edge computing
- Computation offloading
indoor positioning
DQN
estimated position overlapping
NR positioning
cross-link interference
Vehicular communication
user fairness
Mode 3
Rat-dependent positioning
smart factory
RSRP weighting
-
2021.01 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Dongkyu Kim, Haesoon Lee, Jaeyoung Choi, and Daesik Hong,"A New In-band Full-duplex Transmission Scheme Using Alamouti’s Code in Fast Fading Environment," ISWCS, Aug. 2014
[Other Conf. Papers]
조회 31225
Status : | Presented |
---|---|
Date : | 2014-08 |
Title : | A New In-band Full-duplex Transmission Scheme Using Alamouti’s Code in Fast Fading Environment |
Authors : | Dongkyu Kim, Haesoon Lee, Jaeyoung Choi, and Daesik Hong |
Conference : | ISWCS 2014 |
Abstract : | This paper investigates an attempt to improve performance of in-band full-duplex system in terms of both multiplexing gain and diversity order when time selectivity exists and instantaneous channel information is not available at the transmitter. The system, which utilizes spatial resource bi-directionally with shared time and frequency band, is called a ’bi-directional in-band full-duplex (BFD)’ system. The use of full bandwidth and the reciprocity between time and frequency allows the BFD system to reduce the symbol duration. Focusing on this reduction in symbol duration, we can propose a spacetime coded BFD (STC-BFD) scheme for improving both system capacity and reliability using Alamouti code. The proposed STCBFD scheme with N antennas can achieve multiplexing gain of 2 with diversity order of 2(N − 2), whereas conventional halfduplex scheme is only able to achieve multiplexing gains of 1 with diversity orders of N in a fast fading environment without channel state information at the transmitter. |
URL : | http://ieeexplore.ieee.org/xpl/articleDe...earch=true |
Download : | http://mirinae.yonsei.ac.kr/?module=file...3d18470b23 |
Dongkyu Kim; Haesoon Lee; Jaeyoung Choi; Daesik Hong, "A new in-band full-duplex transmission scheme using Alamouti's code in fast fading environment," in Wireless Communications Systems (ISWCS), 2014 11th International Symposium on , vol., no., pp.240-244, 26-29 Aug. 2014
doi: 10.1109/ISWCS.2014.6933354
keywords: {fading channels;telecommunication network reliability;wireless channels;Alamouti code;BFD system;STC-BFD scheme;bidirectional inband full duplex system;channel information;channel state information;diversity order;fast fading environment;frequency band;inband full duplex transmission scheme;multiplexing gain;space-time coded BFD;symbol duration;Bit error rate;Diversity reception;Fading;Multiplexing;Receiving antennas;Transmitting antennas},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6933354&isnumber=6933305
doi: 10.1109/ISWCS.2014.6933354
keywords: {fading channels;telecommunication network reliability;wireless channels;Alamouti code;BFD system;STC-BFD scheme;bidirectional inband full duplex system;channel information;channel state information;diversity order;fast fading environment;frequency band;inband full duplex transmission scheme;multiplexing gain;space-time coded BFD;symbol duration;Bit error rate;Diversity reception;Fading;Multiplexing;Receiving antennas;Transmitting antennas},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6933354&isnumber=6933305
-
2021.01 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-
2021.01 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
카테고리
- 전체(35)
- [ICNN] (3)
- [ICEIC] (14)
- [ITC-CSCC] (11)
- [JTC-CSCC] (3)
- [IEEE ICASSP] (9)
- [IEEE ICC] (22)
- [IEEE ICCE] (1)
- [IEEE ICCS] (3)
- [IEEE ICOIN] (3)
- [IEEE ICONIP] (2)
- [IEEE IJCNN] (9)
- [IEEE INTERMAG] (8)
- [IEEE ISIT] (1)
- [IEEE GLOBECOM] (21)
- [IEEE MILCOM] (11)
- [IEEE PIMRC] (17)
- [IEEE VTC] (69)
- [IEEE WCNC] (8)
- [IEEE TENCON] (1)
- [IEEE CNCC] (1)
- [Other Conf. Papers] (35)