OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Interference Cancellation Channel Estimation Feedback Stochastic Geometry Bi-directional Energy Harvesting Heterogeneous Networks FBMC HetNet Equalization relay networks Ultra Low Power TVWS MIMO interference SC-FDMA CDMA Duplex channel capacity interference suppression 5G Reliability C-V2V in-band full-duplex system OCBT CLI body area networks 5G mobile communication antenna arrays NR positioning health care Resource sharing Location-based LTE-TDD FS-NOMA Power allocation OTDOA hybrid control overhead estimated position overlapping resource block management amplify and forward communication power uncertainty CoMP quality of service cellular radio Rat-dependent positioning telecommunication traffic Handoff Femtocell inter user interference UFMC mode selection GFDM QAM Zigbee frame structure Vehicular communication Vehicle-to-vehicle communication non-orthogonal multiple access QR Factorization Spatial capacity LTE-based V2V Number of training blocks Communication range user fairness Mode 3 resource selection distributed mode maximum likelihood method Metaheuristics cross-link interference Dynamic TDD Uplink SCMA system V2X DQN estimated position updating —Device-to-device (D2D) spectrum partitioning dynamic HetNet indoor positioning D-TDD - Computation offloading multi-access edge computing P-NOMA partial overlap Subband filtering Multi-user Receiver reinforcement learning RSRP weighting smart factory
Status : Presented 
Date : 2021-02 
Title : A Novel Spectrum Partitioning Scheme for Dynamic Heterogeneous Networks 
Authors : Hyunjin Kim, Hyejin Kim, Jintae Kim, and Daesik Hong 
Conference : IEEE VTC Spring 2021 
Abstract : Dynamic heterogeneous networks (HetNets) in which small cells operate in dynamic time division duplex (DTDD) systems enable the instantaneous traffic load to be handled with greater spectral efficiency than conventional HetNets. However, combining HetNets and D-TDD systems causes cross-link interference (CLI) both within the same tier and across tiers, negatively impacting system performance. In this paper, we point out that small cells are underprivileged in terms of interference mitigation under the conventional spectrum partitioning usage. Accordingly, we propose employing a novel spectrum partitioning scheme that brings up interference scenarios where we can take advantage of multiple-input multiple-output (MIMO) compatibility from macro base stations. Simulation results show that the proposed spectrum usage in combination with general MIMO schemes achieves significant performance enhancement in terms of small cell capacity at the cost of a relatively small degradation in macro cell capacity. 

.

List of Articles
No.
Statussort Date
» [IEEE VTC] Hyunjin Kim, Hyejin Kim, Jintae Kim, and Daesik Hong, "A Novel Spectrum Partitioning Scheme for Dynamic Heterogeneous Networks" IEEE VTC Spring 2021 Presented  2021-02 
1 [IEEE GLOBECOM] Yeon-Geun Lim, Daesik Hong, and Chan-Byoung Chae, "Performance Analysis of Self-Interference Cancellation in Full-Duplex Large-Scale MIMO Systems", IEEE GLOBECOM 2016 Presented  2016-12