OFDM Relay Cognitive Radio Multiple Antennas Resource Allocation Full Duplex Spectrum Sensing Synchronization Spectrum Sharing Interference Cancellation Channel Estimation Feedback Heterogeneous Networks Bi-directional Energy Harvesting Stochastic Geometry HetNet relay networks FBMC Equalization channel capacity TVWS CDMA interference in-band full-duplex system Duplex MIMO Ultra Low Power C-V2V 5G Reliability SC-FDMA interference suppression D-TDD CLI indoor positioning reinforcement learning RSRP weighting - Computation offloading smart factory Cell-free multi-access edge computing estimated position overlapping —Device-to-device (D2D) estimated position updating mMIMO control overhead hybrid NR positioning Femtocell Rat-dependent positioning frame structure Zigbee body area networks channel estimation error Handoff CoMP User grouping power uncertainty ultra-dense small cell network mode selection antenna arrays 5G mobile communication UFMC resource block management inter user interference WVAN health care partial overlap GFDM Dynamic TDD Multi-user Receiver Number of training blocks Uplink SCMA system V2X Vehicular communication cross-link interference LTE-TDD FS-NOMA Location-based user fairness Mode 3 QR Factorization Metaheuristics P-NOMA non-orthogonal multiple access dynamic HetNet spectrum partitioning and 5G networks. massive connectivity non-orthogonal multiple access (NOMA) overloading DQN OTDOA distributed mode Communication range resource selection maximum likelihood method Resource sharing Power allocation packet delay
Status : Presented 
Date : 2020-05 
Title : Location-Based Operation Strategy for SIC-enabled D2D Communications 
Authors : Jehyun Heo, Hyunsoo Kim, Insik Jung, Joonki Kim, and Daesik Hong 
Conference : IEEE VTC Fall 2020 
Abstract : In this paper, we propose a novel location-based operation strategy for Device-to-Device (D2D) communication which exploits successive interference cancellation (SIC). First, we investigate the characteristics of SIC-enabled D2D, and then propose a new resource selection scheme to fully exploit cellular uplink (UL) resources and downlink (DL) resources using only location information. Second, we propose a new power allocation scheme designed to overcome the problem of excess outages in cellular users. Simulation results show that the proposed schemes show good D2D throughput performance compared to the existing schemes, while guaranteeing reliability for cellular users. 

.

List of Articles
No.
Status Datesort
» [IEEE VTC] Jehyun Heo, Hyunsoo Kim, Insik Jung, Joonki Kim, and Daesik Hong, "Location-Based Operation Strategy for SIC-enabled D2D Communications" IEEE VTC Fall 2020 file Presented  2020-05