OFDM Multiple Antennas Cognitive Radio Relay Synchronization CDMA Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Neural Networks Resource Allocation Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Heterogeneous Networks Energy Harvesting Device-to-Device (D2D) Cell Search Spectral efficiency NOMA FBMC interference management Dynamic TDD Cross-link interference SINR mismatch problem HetNet Idle cells Ultra-dense small cell networks achievable sum rate outage probability multi-spectral full-duplex relay selection diversity bursty traffic model mode selection Handoff CP-OFDM non-orthogonal multiple access self-interference cancellation Singular Vale Decomposition interference mitigation full-duplex cellular interference coordination Cognitive relay networks Time spreading beamforming Link adaptation Heterogeneous channel estimation capability coexistence MU-MIMO full-spreading NOMA GFDM Bi-directional full-duplex OQAM sensing duration Correlated MIMO Simultaneous Sensing and Transmission transmission capacity (TC) Two-way communications in-band full-duplex system automatic repeat request (ARQ) UWB flexible duplex TS-W-OFDM Windowing time-frequency efficiency eigen decomposition pilot signal 5G networks prototype filter Aggregate interference Long Term Evolution-Advanced interference to noise ratio resource size control link reliability mixed numerology Vehicle-to-vehicle communication LTE-based V2V Coexistence scenarios Resource management Filtered OFDM Cooperative systems Complexity tabu-search Deep learning Reliability Vehicle-to-Vehicle C-V2V HST Mobility Preamble 5G Grant-free Transmission Asynchronous Transmission Railway MLP massive connectivity
Status : Published 
Date : 2018-02 
Title : Time Spread-Windowed OFDM for Spectral Efficiency Improvement 
Authors : Hyejin Kim, Insik Jung, Yosub Park, Wonsuk Chung, Sooyong Choi, and Daesik Hong 
Journal : IEEE Wireless Communications Letters 
Abstract : This letter proposes a new orthogonal frequency division multiplexing (OFDM)-based waveform, called time spread-windowed OFDM (TS-W-OFDM). TS-W-OFDM applies a windowing procedure to improve spectral efficiency and a time spreading method to create a block signal structure. Numerical results show that TS-W-OFDM has higher spectral efficiency and nearly same error rate compared to the conventional cyclic prefix-OFDM, windowed-OFDM (W-OFDM), weighted overlap and add-based OFDM (WOLA-OFDM), and filtered-OFDM (F-OFDM). In addition, they also show that TS-W-OFDM has lower complexity than W-OFDM, WOLA-OFDM, and F-OFDM. 
URL : https://ieeexplore.ieee.org/document/8306902 

.

List of Articles
No.
Status Datesort
4 [IEEE Wireless Commun. Lett.] Hakkeon Lee, Insik Jung, Jehyun Heo, and Daesik Hong, "Exploiting Intentional Time-domain Offset in Downlink Multicarrier NOMA systems", IEEE Wireless Communications Letters, Apr. 2021 file Accepted  2021-04 
3 [IEEE Wireless Commun. Lett.] Beomju Kim, Yosub Park, and Daesik Hong, "Partial Non-Orthogonal Multiple Access (P-NOMA)", IEEE Wireless Communications Letters, May 2019 Published  2019-05 
» [IEEE Wireless Commun. Lett.] Hyejin Kim, Insik Jung, Yosub Park, Wonsuk Chung, Sooyong Choi, and Daesik Hong, "Time Spread-Windowed OFDM for Spectral Efficiency Improvement", IEEE Wireless Comm. Letters, Feb. 2018 Published  2018-02 
1 [IEEE Wireless Commun. Lett.] Jihaeng Heo, Gosan Noh, Sungsoo Park, Sungmook Lim and Daesik Hong, "Mobile TV White Space with Multi-Region based Mobility Procedure", IEEE Wireless Comm. Letters, Dec. 2012 file Published  2012-12