OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Resource Allocation Spectrum Sensing Neural Networks Full duplex Stochastic Geometry Equalizer Bi-Directional Feedback Energy Harvesting Heterogeneous Networks Femtocell Device-to-Device (D2D) Idle cells Cross-link interference FBMC Spectral efficiency Cell Search SINR mismatch problem NOMA Ultra-dense small cell networks HetNet interference management Dynamic TDD outage probability selection diversity achievable sum rate bursty traffic model Cognitive relay networks mode selection multi-spectral 5G Complexity Singular Vale Decomposition OQAM tabu-search Filtered OFDM TDD configuration flexible duplex Handoff GFDM Heterogeneous channel estimation capability self-interference cancellation in-band full-duplex system Channel estimation error coexistence CP-OFDM MU-MIMO automatic repeat request (ARQ) Two-way communications UWB full-duplex relay full-duplex cellular Simultaneous Sensing and Transmission Correlated MIMO transmission capacity (TC) sensing duration Bi-directional full-duplex Vehicle-to-Vehicle prototype filter pilot signal Coexistence scenarios resource size control Vehicle-to-vehicle communication link reliability interference to noise ratio eigen decomposition TS-W-OFDM Resource management Cooperative systems LTE-based V2V Aggregate interference time-frequency efficiency mixed numerology Windowing Reliability C-V2V Asynchronous Transmission Full-duplex Computation offloading Grant-free Transmission Preamble full-spreading NOMA massive connectivity Edge computing Multiple access MLP Deep learning Railway Mobility interference mitigation HST non-orthogonal multiple access
Status : Published 
Date : 2018-02 
Title : Time Spread-Windowed OFDM for Spectral Efficiency Improvement 
Authors : Hyejin Kim, Insik Jung, Yosub Park, Wonsuk Chung, Sooyong Choi, and Daesik Hong 
Journal : IEEE Wireless Communications Letters 
Abstract : This letter proposes a new orthogonal frequency division multiplexing (OFDM)-based waveform, called time spread-windowed OFDM (TS-W-OFDM). TS-W-OFDM applies a windowing procedure to improve spectral efficiency and a time spreading method to create a block signal structure. Numerical results show that TS-W-OFDM has higher spectral efficiency and nearly same error rate compared to the conventional cyclic prefix-OFDM, windowed-OFDM (W-OFDM), weighted overlap and add-based OFDM (WOLA-OFDM), and filtered-OFDM (F-OFDM). In addition, they also show that TS-W-OFDM has lower complexity than W-OFDM, WOLA-OFDM, and F-OFDM. 
URL : https://ieeexplore.ieee.org/document/8306902 

.

List of Articles
No.
Status Datesort
4 [IEEE Wireless Commun. Lett.] Hakkeon Lee, Insik Jung, Jehyun Heo, and Daesik Hong, "Exploiting Intentional Time-domain Offset in Downlink Multicarrier NOMA systems", IEEE Wireless Communications Letters, Apr. 2021 Published  2021-04 
3 [IEEE Wireless Commun. Lett.] Beomju Kim, Yosub Park, and Daesik Hong, "Partial Non-Orthogonal Multiple Access (P-NOMA)", IEEE Wireless Communications Letters, May 2019 Published  2019-05 
» [IEEE Wireless Commun. Lett.] Hyejin Kim, Insik Jung, Yosub Park, Wonsuk Chung, Sooyong Choi, and Daesik Hong, "Time Spread-Windowed OFDM for Spectral Efficiency Improvement", IEEE Wireless Comm. Letters, Feb. 2018 Published  2018-02 
1 [IEEE Wireless Commun. Lett.] Jihaeng Heo, Gosan Noh, Sungsoo Park, Sungmook Lim and Daesik Hong, "Mobile TV White Space with Multi-Region based Mobility Procedure", IEEE Wireless Comm. Letters, Dec. 2012 file Published  2012-12