OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Neural Networks Spectrum Sensing Full duplex Resource Allocation Stochastic Geometry Equalizer Feedback Bi-Directional Energy Harvesting Femtocell Heterogeneous Networks Device-to-Device (D2D) Cell Search FBMC HetNet Idle cells Ultra-dense small cell networks Spectral efficiency SINR mismatch problem automatic repeat request (ARQ) in-band full-duplex system Two-way communications transmission capacity (TC) Correlated MIMO sensing duration self-interference cancellation Simultaneous Sensing and Transmission full-duplex cellular multi-spectral beamforming UWB achievable sum rate outage probability Cognitive relay networks selection diversity full-duplex relay Latency Vehicular and wireless technologies Asynchronized system Cross-link interference Cellular networks coexistence Channel estimation error Ultra-dense small cell Shortened TTI UL grant free NOMA mode selection Bi-directional full-duplex OQAM Link adaptation Iterative decoder LTE-TDD Dynamic TDD bursty traffic model Filtered OFDM MIMO singular value decomposition Time spreading K-S statistics interference coordination Vehicle-to-vehicle communication eigen decomposition 5G networks GFDM MU-MIMO TS-W-OFDM prototype filter pilot signal Windowing time-frequency efficiency Long Term Evolution-Advanced Aggregate interference LTE-based V2V Resource management Coexistence scenarios resource size control interference to noise ratio interference management mixed numerology Reliability Cooperative systems link reliability C-V2V non-orthogonal multiple access full-spreading NOMA massive connectivity Complexity CP-OFDM Vehicle-to-Vehicle Singular Vale Decomposition tabu-search
Status : Published 
Date : 2019-05 
Title : Partial Non-Orthogonal Multiple Access (P-NOMA) 
Authors : Beomju Kim, Yosub Park, and Daesik Hong 
Journal : IEEE Wireless Communications Letters 
Abstract : In this paper, we propose a novel hybrid type of power-domain non-orthogonal multiple access (NOMA) in downlink environments, called partial NOMA (P-NOMA). In conventional NOMA, where the signals of user equipments (UEs) are fully overlapped, the utilization of the bandwidth can be maximized, but doing so also maximizes the interference from the other UEs. P-NOMA partially overlaps the UEs’ signals by controlling the extent of the overlap and can thus reduce the interference from other UEs. To verify whether this is a possibility with P-NOMA, we observed the performance tendency of the achievable rate versus the overlap ratio and then confirmed that there is an overlap ratio that achieves performance that is better than that of conventional NOMA with respect to the sum of the achievable rate. In other words, slightly reducing the overlap ratio improves the sum of the achievable rate compared to the full overlap ratio. 
URL : https://ieeexplore.ieee.org/document/8721523 

.

List of Articles
No.
Status Datesort
» [IEEE Wireless Commun. Lett.] Beomju Kim, Yosub Park, and Daesik Hong, "Partial Non-Orthogonal Multiple Access (P-NOMA)", IEEE Wireless Communications Letters, May 2019 Published  2019-05 
2 [IEEE Wireless Commun. Lett.] Hyejin Kim, Insik Jung, Yosub Park, Wonsuk Chung, Sooyong Choi, and Daesik Hong, "Time Spread-Windowed OFDM for Spectral Efficiency Improvement", IEEE Wireless Comm. Letters, Feb. 2018 Published  2018-02 
1 [IEEE Wireless Commun. Lett.] Jihaeng Heo, Gosan Noh, Sungsoo Park, Sungmook Lim and Daesik Hong, "Mobile TV White Space with Multi-Region based Mobility Procedure", IEEE Wireless Comm. Letters, Dec. 2012 file Published  2012-12