OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection B5G multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G Cell-free Coexisting network Multiple access Railway CP-OFDM MLP Edge computing Full-duplex Mobility non-orthogonal multiple access HST interference mitigation Computation offloading TDD configuration Singular Vale Decomposition
Status : Published 
Date : 2018-08 
Title : Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation 
Authors : Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : This paper proposes a new generalized frequency division multiplexing (GFDM) system that eliminates the effects of intrinsic interference and makes it possible to insert a pilot for channel estimation without interference. We express inter-subsymbol interference (ISI) and inter-carrier interference (ICI), which represent the intrinsic interference in GFDM systems, in a matrix form. The proposed GFDM system can remove the ISI through pre-processing and post-processing, which are done by eigendecomposition. We analytically derive the sufficient condition for the ICI removal. In this way, the proposed GFDM system is able to eliminate the effects of both the ISI and ICI. Furthermore, we investigate the prototype filter structures of the proposed GFDM system transformed by pre-processing and post-processing. We verify that the changed prototype filter structures are able to insert pilot symbols that are orthogonal to data symbols. Hence, the pilot symbols for channel estimation can be clearly observed. Simulation results demonstrate that the proposed system has better BER performance than conventional GFDM systems when the channel estimation process is considered. 
URL : https://ieeexplore.ieee.org/document/844...uthoralert 

.

List of Articles
No.
Statussort Date
» [IEEE Trans. Wireless Commun.] Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel estimation", IEEE Trans. on Wireless Comm., Aug. 2018 Published  2018-08