OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search Idle cells NOMA HetNet Ultra-dense small cell networks Spectral efficiency FBMC SINR mismatch problem Dynamic TDD interference management Sub-band filtering Mobility eigen decomposition outage probability Railway selection diversity Handoff Asynchronous Transmission flexible duplex 5G achievable sum rate interference mitigation Preamble Deep learning Grant-free Transmission MLP in-band full-duplex system sensing duration Correlated MIMO Simultaneous Sensing and Transmission transmission capacity (TC) Two-way communications Filtered OFDM automatic repeat request (ARQ) UWB full-duplex cellular OQAM bursty traffic model mode selection Bi-directional full-duplex Heterogeneous channel estimation capability Cognitive relay networks Channel estimation error multi-spectral pilot signal resource size control interference to noise ratio link reliability Coexistence scenarios mixed numerology Cooperative systems Resource management LTE-based V2V Vehicle-to-vehicle communication CP-OFDM massive connectivity tabu-search full-spreading NOMA Singular Vale Decomposition prototype filter Vehicle-to-Vehicle Reliability C-V2V Intentional frequency offset (IFO) Degree of freedom (DoF) B5G Asynchronism Asynchronous non-orthogonal multiple access (NOMA) TDD configuration Computation offloading Multiple access 6G non-orthogonal multiple access Complexity Full-duplex Edge computing Cell-free Coexisting network HST
Status : Published 
Date : 2017-07 
Title : Latency of Cellular-based V2X: Perspectives on TTI-proportional-latency and TTI-independent-latency 
Authors : Kwonjong Lee, Joonki Kim, Yosub Park, Hanho Wang, and Daesik Hong 
Journal : IEEE Access 
Abstract : Vehicle-to-Everything (V2X) is a form of wireless communication that is extremely sensitive to latency, because the latency is directly related to driving safety. The V2X systems developed so far have been based on the LTE system. However, the conventional LTE system is not able to support the latency requirements of latency-aware V2X. Fortunately, the state-ofthe-art cellular technology standard includes development of latency reduction schemes such as shortened transmission time intervals (TTI) and self-contained subframes. This paper verifies and analyzes the latency of cellular-based V2X with shortened TTI, which is one of the most efficient latency reduction schemes. To verify the feasibility of V2X service, we divide the V2X latency into two types of latency, TTI-independent latency (IL) and TTI-proportional latency (PL). Moreover, using system-level simulations considering additional overhead from shortened TTI, we evaluate the latency of cellular-based V2X systems. Based on this feasibility verification, we then propose cellular-based V2X system design principles in terms of shortened TTI with only one OFDM symbol and while sustaining RRC connection. 
URL : http://ieeexplore.ieee.org/stamp/stamp.j...er=7990497 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

.

List of Articles
No.
Status Datesort
» [IEEE Access] Kwonjong Lee, Joonki Kim, Yosub Park, Hanho Wang, and Daesik Hong, "Latency of Cellular-based V2X: Perspectives on TTI-proportional-latency and TTI-independent-latency", IEEE Access, Jul. 2017 file Published  2017-07