Spectrum Sensing 6G Full duplex Cognitive Radio OFDM Idle cells FBMC Energy Harvesting Ultra-dense small cell networks Bi-Directional stochastic geometry interference management Asynchronous Transmission SINR mismatch problem HetNet Dynamic TDD NOMA Cross-link interference Spectral efficiency bursty traffic model mode selection Device-to-Device (D2D) OQAM Channel estimation error multi-spectral Ultra-dense small cell Heterogeneous channel estimation capability synchronization Bi-directional full-duplex Preamble Intentional frequency offset (IFO) Asynchronism Shortened TTI Deep learning MLP Vehicle-to-vehicle communication Low Earth orbits (LEO) satellite Railway Simultaneous Sensing and Transmission full-duplex relay Cellular networks Latency selection diversity Cognitive relay networks MIMO K-S statistics Long Term Evolution-Advanced 5G networks interference coordination full-duplex cellular interference mitigation sensing duration Correlated MIMO outage probability transmission capacity (TC) Two-way communications self-interference cancellation in-band full-duplex system automatic repeat request (ARQ) achievable sum rate Coexisting network interference to noise ratio link reliability tabu-search massive connectivity resource size control Coexistence scenarios Resource management spectrum sharing mixed numerology Multiple input multiple output (MIMO) New radio non-terrestrial network (NR-NTN) full-spreading NOMA Intentional time offset LTE-based V2V CP-OFDM Singular Vale Decomposition non-orthogonal multiple access Non-orthogonal multiple access (NOMA) Complexity Cooperative systems Reliability B5G Multiple access Cell-free HST Mobility flexible duplex 5G Asynchronous non-orthogonal multiple access (NOMA) Edge computing Full-duplex Filtered OFDM Vehicle-to-Vehicle C-V2V Grant-free Transmission Sub-band filtering Computation offloading TDD configuration Degree of freedom (DoF) Satellite communication
Status : Published 
Date : 2018-10 
Title : Resource Size Control for Reliability Improvement in Cellular-based V2V Communication 
Authors : Yosub Park, Taehyung Kim, and Daesik Hong 
Journal : IEEE Transactions on Vehicular Technology 
Abstract : In vehicle-to-vehicle (V2V) communication, link reliability has been regarded as an important performance metric, especially for safety-critical broadcast services. In this paper, we analyze the link reliability of the centralized mode (Mode 3) for long-term evolution (LTE)-based V2V (LTE-V2V) from the PHY/MAC perspectives. Moreover, we derive the statistical distribution of the interference distance and interference to noise ratio (INR) for LTE-V2V. Based on this analytical framework, we propose a resource size control (RSC) method for improving link reliability. The proposed RSC adapts the resource size according to the macroscopic network parameters such as vehicle density, communication range, and message size. Numerical results show that the proposed method improves link reliability compared with the fixed resource size setting in a highway scenario. Moreover, it is observed that larger-sized resources are preferred when the vehicle density decreases, the message size increases, or the communication range decreases. 
URL : https://ieeexplore.ieee.org/document/852...uthoralert 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

.

List of Articles
No.
Statussort Date
» [IEEE Trans. Veh. Technol.] Yosub Park, Taehyung Kim, and Daesik Hong, "Resource Size Control for Reliability Improvement in Cellular-based V2V Communication", IEEE Trans. Veh. Technol., Oct. 2018 file Published  2018-10