OFDM Multiple Antennas Cognitive Radio Relay Synchronization CDMA Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Neural Networks Resource Allocation Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Heterogeneous Networks Energy Harvesting Device-to-Device (D2D) Cell Search Spectral efficiency NOMA FBMC interference management Dynamic TDD Cross-link interference SINR mismatch problem HetNet Idle cells Ultra-dense small cell networks achievable sum rate outage probability multi-spectral full-duplex relay selection diversity bursty traffic model mode selection Handoff CP-OFDM non-orthogonal multiple access self-interference cancellation Singular Vale Decomposition interference mitigation full-duplex cellular interference coordination Cognitive relay networks Time spreading beamforming Link adaptation Heterogeneous channel estimation capability coexistence MU-MIMO full-spreading NOMA GFDM Bi-directional full-duplex OQAM sensing duration Correlated MIMO Simultaneous Sensing and Transmission transmission capacity (TC) Two-way communications in-band full-duplex system automatic repeat request (ARQ) UWB flexible duplex TS-W-OFDM Windowing time-frequency efficiency eigen decomposition pilot signal 5G networks prototype filter Aggregate interference Long Term Evolution-Advanced interference to noise ratio resource size control link reliability mixed numerology Vehicle-to-vehicle communication LTE-based V2V Coexistence scenarios Resource management Filtered OFDM Cooperative systems Complexity tabu-search Deep learning Reliability Vehicle-to-Vehicle C-V2V HST Mobility Preamble 5G Grant-free Transmission Asynchronous Transmission Railway MLP massive connectivity
Status : Published 
Date : 2020-07 
Title : Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-link Interference Mitigation 
Authors : Hyejin Kim,Jintae Kim, and Daesik Hong 
Journal : IEEE Comm. Surveys & Tutorials 
Abstract : Dynamic time division duplex (D-TDD) dynamically allocates the transmission directions for traffic adaptation in each cell. D-TDD systems are receiving a lot of attention because they can reduce latency and increase spectrum utilization via flexible and dynamic duplex operation in 5G New Radio (NR). However, the advantages of the D-TDD system are difficult to fully utilize due to the cross-link interference (CLI) arising from the use of different transmission directions between adjacent cells. This paper is a survey of the research from academia and the standardization efforts being ndertaken to solve this CLI problem and make the D-TDD system a reality. Specifically, we categorize and present the approaches to mitigating CLI according to operational principles. Furthermore, we present the signaling necessary to apply the CLI mitigation schemes. We also present information-theoretic performance analysis of D-TDD systems in various environments. As topics for future works, we discuss the research challenges and opportunities associated with the CLI mitigation schemes and signaling design in a variety of environments. This survey is recommended for those who are in the initial stage of studying D-TDD systems and those who wish to develop a more feasible D-TDD system as a baseline for reviewing the research flow and standardization trends surrounding D-TDD systems and to identify areas of focus for future works. 
URL : https://ieeexplore.ieee.org/document/9139384 

.

List of Articles
No.
Status Datesort
» [IEEE Comm. Surveys & Turotials] Hyejin Kim, Jintae Kim, and Daesik Hong, "Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-Link Interference Mitigation," in IEEE Communications Surveys & Tutorials, Fourthquarter 2020 update Published  2020-07 
1 [IEEE Trans. Wireless Commun.] Yosub Park, Jihaeng Heo, Wonsuk Chung, Sungwoo Weon, Sooyong Choi, and Daesik Hong, "A New Link Adaptation Method to Mitigate SINR Mismatch in Ultra-dense Small Cell LTE Networks", IEEE Trans. on Wireless Comm., Nov. 2017 Published  2017-11