OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection Coexisting network multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G B5G TDD configuration Cell-free Railway CP-OFDM MLP Full-duplex Computation offloading Mobility non-orthogonal multiple access HST interference mitigation Edge computing Multiple access Singular Vale Decomposition
Status : Published 
Date : 2019-03 
Title : A Transceiver Design for Spectrum Sharing in Mixed Numerology Environments 
Authors : Jaeyoung Choi, Beomju Kim, Kwonjong Lee, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : We consider a mixed numerology spectrum sharing (SS) system where the users have different subcarrier spacing (SCS). Unlike in single numerology SS systems, mixed numerology SS systems suffer from inter-numerology interference (INI). We first derive the interference pattern and find that the variance of interference energy increases due to the difference in SCS. This increase in variance negatively affects decoding performance, since the interference energy is unbalanced between subcarriers. However, previous works on this issue did not take this interference pattern into account for interference management. In order to suppress the increase in variance of the interference energy, we propose a transceiver structure for large SCS users by using simple cyclic shift and frequency shift operations. The proposed transceiver disperses the effect of INI, reducing the variance in the interference energy. From the derived distribution characteristics of the interference energy in closed-form expressions, we show that the proposed transceiver achieves better decoding performance. 
URL : https://ieeexplore.ieee.org/document/867...uthoralert 

.

List of Articles
No.
Statussort Date
» [IEEE Trans. Wireless Commun.] Jaeyoung Choi, Beomju Kim, Kwonjong Lee, and Daesik Hong, "A Transceiver Design for Spectrum Sharing in Mixed Numerology Environments", IEEE Trans. on Wireless Comm., Mar. 2019 Published  2019-03