OFDM Multiple Antennas Cognitive Radio Relay Synchronization CDMA Channel Estimation Spectrum Sharing Interference Cancellation Spectrum Sensing Full duplex Neural Networks Resource Allocation Stochastic Geometry Equalizer Bi-Directional Feedback Heterogeneous Networks Energy Harvesting Femtocell Device-to-Device (D2D) Idle cells FBMC Ultra-dense small cell networks Cell Search Spectral efficiency SINR mismatch problem Cross-link interference HetNet Dynamic TDD self-interference cancellation full-duplex relay in-band full-duplex system automatic repeat request (ARQ) transmission capacity (TC) full-duplex cellular Two-way communications sensing duration selection diversity GFDM interference mitigation Correlated MIMO mode selection multi-spectral outage probability achievable sum rate Cognitive relay networks Vehicular and wireless technologies bursty traffic model UL grant free NOMA Asynchronized system Reliability Latency Cellular networks LTE-TDD Iterative decoder Bi-directional full-duplex OQAM UWB MU-MIMO coexistence Link adaptation beamforming Simultaneous Sensing and Transmission CP-OFDM Long Term Evolution-Advanced Aggregate interference singular value decomposition MIMO 5G networks time-frequency efficiency K-S statistics Time spreading Windowing Vehicle-to-vehicle communication LTE-based V2V interference coordination prototype filter pilot signal TS-W-OFDM eigen decomposition link reliability interference to noise ratio tabu-search resource size control C-V2V Coexistence scenarios interference management Resource management mixed numerology Vehicle-to-Vehicle massive connectivity Complexity non-orthogonal multiple access full-spreading NOMA Filtered OFDM Singular Vale Decomposition 5G flexible duplex Cooperative systems
Status : Published 
Date : 2018-08 
Title : Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation 
Authors : Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : This paper proposes a new generalized frequency division multiplexing (GFDM) system that eliminates the effects of intrinsic interference and makes it possible to insert a pilot for channel estimation without interference. We express inter-subsymbol interference (ISI) and inter-carrier interference (ICI), which represent the intrinsic interference in GFDM systems, in a matrix form. The proposed GFDM system can remove the ISI through pre-processing and post-processing, which are done by eigendecomposition. We analytically derive the sufficient condition for the ICI removal. In this way, the proposed GFDM system is able to eliminate the effects of both the ISI and ICI. Furthermore, we investigate the prototype filter structures of the proposed GFDM system transformed by pre-processing and post-processing. We verify that the changed prototype filter structures are able to insert pilot symbols that are orthogonal to data symbols. Hence, the pilot symbols for channel estimation can be clearly observed. Simulation results demonstrate that the proposed system has better BER performance than conventional GFDM systems when the channel estimation process is considered. 
URL : https://ieeexplore.ieee.org/document/844...uthoralert 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Wireless Commun.] Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel estimation", IEEE Trans. on Wireless Comm., Aug. 2018 Published  2018-08