OFDM
Multiple Antennas
Cognitive Radio
Relay
CDMA
Synchronization
Channel Estimation
Spectrum Sharing
Interference Cancellation
Full duplex
Spectrum Sensing
Resource Allocation
Neural Networks
Stochastic Geometry
Equalizer
Bi-Directional
Feedback
Femtocell
Energy Harvesting
Heterogeneous Networks
Device-to-Device (D2D)
Cross-link interference
Cell Search
Idle cells
NOMA
HetNet
Ultra-dense small cell networks
Spectral efficiency
FBMC
SINR mismatch problem
Dynamic TDD
interference management
Sub-band filtering
Mobility
eigen decomposition
outage probability
Railway
selection diversity
Handoff
Asynchronous Transmission
flexible duplex
5G
achievable sum rate
interference mitigation
Preamble
Deep learning
Grant-free Transmission
MLP
in-band full-duplex system
sensing duration
Correlated MIMO
Simultaneous Sensing and Transmission
transmission capacity (TC)
Two-way communications
Filtered OFDM
automatic repeat request (ARQ)
UWB
full-duplex cellular
OQAM
bursty traffic model
mode selection
Bi-directional full-duplex
Heterogeneous channel estimation capability
Cognitive relay networks
Channel estimation error
multi-spectral
pilot signal
resource size control
interference to noise ratio
link reliability
Coexistence scenarios
mixed numerology
Cooperative systems
Resource management
LTE-based V2V
Vehicle-to-vehicle communication
CP-OFDM
full-spreading NOMA
massive connectivity
non-orthogonal multiple access
Singular Vale Decomposition
prototype filter
Vehicle-to-Vehicle
Reliability
C-V2V
Intentional frequency offset (IFO)
B5G
Multiple access
Asynchronism
Degree of freedom (DoF)
Asynchronous non-orthogonal multiple access (NOMA)
TDD configuration
6G
Cell-free
tabu-search
Complexity
Computation offloading
Full-duplex
Coexisting network
Edge computing
HST
-
2023.05 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Jemin Lee, Jeffrey G. Andrews, and Daesik Hong, "Spectrum-Sharing Transmission Capacity with Interference Cancellation", IEEE Transactions on Communications, Jan. 2013
[IEEE Trans. Commun.]
조회 43939
Status : | Published |
---|---|
Date : | 2013-01 |
Title : | Spectrum-Sharing Transmission Capacity with Interference Cancellation |
Authors : | Jemin Lee, Jeffrey G. Andrews and Daesik Hong |
Journal : | IEEE Transactions on Communications |
Abstract : | This paper analyzes large-scale networks that share the spectrum with interference cancellation (IC). The efficiency of spectrum sharing is determined primarily by interference, which in turn depends on the spatial densities, the interference cancellation method, and the spectrum sharing method, i.e., underlay or overlay. By assuming the Poisson distribution for transmitters, equal transmission power in the same system, and the interference-limited environment, this paper finds the performance gain from IC in terms of spectrum-sharing transmission capacity (S-TC), defined as the number of successful transmissions per unit area while guaranteeing the target outage probabilities of all coexisting systems. The effectiveness of IC is characterized by the coefficient of cancellation (CoC), and specific CoC values are derived for two simple IC scenarios, the strong interferer and the close interferer cancellation, with the assumption of having perfect information for channel states of interfering links and interferer locations. The sum S-TC optimal spatial densities of two systems are given. Finally, CoC conditions to determine the superiority of an underlay or overlay method are presented. We verify that the underlay method could be preferred depending on CoCs of coexisting systems; starkly different from the case without IC, in which the overlay method is always better. |
URL : | http://ieeexplore.ieee.org/xpl/articleDe...er=6334503 |
Download : | http://mirinae.yonsei.ac.kr/?module=file...3cf59178b9 |
Lee, Jemin; Andrews, Jeffrey G.; Hong, Daesik; , "Spectrum-Sharing Transmission Capacity with Interference Cancellation," Communications, IEEE Transactions on , vol.61, no.1, pp.76-86, January 2013
doi: 10.1109/TCOMM.2012.100512.110347
keywords: {Array signal processing;Integrated circuits;Interference cancellation;Receivers;Silicon carbide;Transmitters;Spectrum sharing;cognitive radio;interference cancellation;stochastic geometry;transmission capacity;}
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6334503&isnumber=6451308
doi: 10.1109/TCOMM.2012.100512.110347
keywords: {Array signal processing;Integrated circuits;Interference cancellation;Receivers;Silicon carbide;Transmitters;Spectrum sharing;cognitive radio;interference cancellation;stochastic geometry;transmission capacity;}
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6334503&isnumber=6451308
-
2023.05 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-
2023.05 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
카테고리
- 전체(8)
- [IEEE J. Sel. Areas Commun.] (1)
- [IEEE Commun. Mag.] (2)
- [IEEE Trans. Commun.] (7)
- [IEEE Commun. Lett.] (16)
- [IEEE Trans. Wireless Commun.] (47)
- [IEEE Wireless Commun. Mag.] (1)
- [IEEE Wireless Commun. Lett.] (4)
- [IEEE Trans. Veh. Technol.] (29)
- [IEEE Trans. Signal Process.] (1)
- [IEEE Trans. Broadcast.] (1)
- [IEEE Trans. Magn.] (8)
- [IEEE Trans. Neural Netw.] (3)
- [IEEE Trans. Ind. Electron.] (1)
- [IEEE Trans. Consum. Electron.] (1)
- [IEEE Signal Process. Lett.] (9)
- [Electron. Lett.] (5)
- [IEICE Trans. Commun.] (14)
- [IEICE Trans. Fund.] (1)
- [Neuro Computing] (1)
- [Optical Engineering] (2)
- [IEEE Comm. Surveys & Turotials] (2)
- [IEEE Access] (5)
- [Other Journals] (9)