Spectrum Sensing 6G Full duplex Cognitive Radio OFDM Idle cells FBMC Energy Harvesting Ultra-dense small cell networks Bi-Directional stochastic geometry interference management Asynchronous Transmission SINR mismatch problem HetNet Dynamic TDD NOMA Cross-link interference Spectral efficiency bursty traffic model mode selection Device-to-Device (D2D) OQAM Channel estimation error multi-spectral Ultra-dense small cell Heterogeneous channel estimation capability synchronization Bi-directional full-duplex Preamble Intentional frequency offset (IFO) Asynchronism Shortened TTI Deep learning MLP Vehicle-to-vehicle communication Low Earth orbits (LEO) satellite Railway Simultaneous Sensing and Transmission full-duplex relay Cellular networks Latency selection diversity Cognitive relay networks MIMO K-S statistics Long Term Evolution-Advanced 5G networks interference coordination full-duplex cellular interference mitigation sensing duration Correlated MIMO outage probability transmission capacity (TC) Two-way communications self-interference cancellation in-band full-duplex system automatic repeat request (ARQ) achievable sum rate Coexisting network interference to noise ratio link reliability tabu-search massive connectivity resource size control Coexistence scenarios Resource management spectrum sharing mixed numerology Multiple input multiple output (MIMO) New radio non-terrestrial network (NR-NTN) full-spreading NOMA Intentional time offset LTE-based V2V CP-OFDM Singular Vale Decomposition non-orthogonal multiple access Non-orthogonal multiple access (NOMA) Complexity Cooperative systems Reliability B5G Multiple access Cell-free HST Mobility flexible duplex 5G Asynchronous non-orthogonal multiple access (NOMA) Edge computing Full-duplex Filtered OFDM Vehicle-to-Vehicle C-V2V Grant-free Transmission Sub-band filtering Computation offloading TDD configuration Degree of freedom (DoF) Satellite communication
Status : Published 
Date : 2016-01 
Title : Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model 
Authors : Joonki Kim, Seokjung Kim, Jonghyun Bang, and Daesik Hong 
Journal : IEEE Communications Letters 
Abstract : This paper proposes a new mode selection scheme to improve the overall packet rates for device-to-device (D2D) communications systems in the bursty traffic model. We consider three types of D2D modes, i.e., dedicated mode, cellular mode, and reuse mode. In the full-buffer traffic model, if all the uplink (UL) channels are occupied by cellular users, the dedicated and cellular modes are not available for D2D user equipments (DUEs) to choose. However, in bursty traffic model, the traffic load is time-varying and DUEs have the option to select the dedicated or cellular modes. To determine the best mode for a DUE in the bursty traffic, we propose a mode selection scheme which considers the traffic load for the bursty traffic model. Numerical results show that the proposed scheme achieves a remarkable enhancement in average end-to-end delay, dropping probability and packet rate. 
URL : http://ieeexplore.ieee.org/xpl/articleDe...ic%20Model 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

Kim, Joonki; Kim, Seokjung; Bang, Jonghyun; Hong, Daesik, "Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model", Communications Leters, IEEE, Jan 2016

doi: 10.1109/LCOMM.2016.2521371

keywords: {Device-to-Device Communication;mode selection;bursty traffic model}

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7390167

List of Articles
No.
Status Datesort
» [IEEE Commun. Lett.] Joonki Kim, Seokjung Kim, Jonghyun Bang, and Daesik Hong, "Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model", IEEE Comm. Letters, Jan 2016 file Published  2016-01