Spectrum Sensing 6G Full duplex Cognitive Radio OFDM Idle cells FBMC Energy Harvesting Ultra-dense small cell networks Bi-Directional stochastic geometry interference management Asynchronous Transmission SINR mismatch problem HetNet Dynamic TDD NOMA Cross-link interference Spectral efficiency bursty traffic model mode selection Device-to-Device (D2D) OQAM Channel estimation error multi-spectral Ultra-dense small cell Heterogeneous channel estimation capability synchronization Bi-directional full-duplex Preamble Intentional frequency offset (IFO) Asynchronism Shortened TTI Deep learning MLP Vehicle-to-vehicle communication Low Earth orbits (LEO) satellite Railway Simultaneous Sensing and Transmission full-duplex relay Cellular networks Latency selection diversity Cognitive relay networks MIMO K-S statistics Long Term Evolution-Advanced 5G networks interference coordination full-duplex cellular interference mitigation sensing duration Correlated MIMO outage probability transmission capacity (TC) Two-way communications self-interference cancellation in-band full-duplex system automatic repeat request (ARQ) achievable sum rate Coexisting network interference to noise ratio link reliability tabu-search massive connectivity resource size control Coexistence scenarios Resource management spectrum sharing mixed numerology Multiple input multiple output (MIMO) New radio non-terrestrial network (NR-NTN) full-spreading NOMA Intentional time offset LTE-based V2V CP-OFDM Singular Vale Decomposition non-orthogonal multiple access Non-orthogonal multiple access (NOMA) Complexity Cooperative systems Reliability B5G Multiple access Cell-free HST Mobility flexible duplex 5G Asynchronous non-orthogonal multiple access (NOMA) Edge computing Full-duplex Filtered OFDM Vehicle-to-Vehicle C-V2V Grant-free Transmission Sub-band filtering Computation offloading TDD configuration Degree of freedom (DoF) Satellite communication
Status : Published 
Date : 2018-08 
Title : Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation 
Authors : Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : This paper proposes a new generalized frequency division multiplexing (GFDM) system that eliminates the effects of intrinsic interference and makes it possible to insert a pilot for channel estimation without interference. We express inter-subsymbol interference (ISI) and inter-carrier interference (ICI), which represent the intrinsic interference in GFDM systems, in a matrix form. The proposed GFDM system can remove the ISI through pre-processing and post-processing, which are done by eigendecomposition. We analytically derive the sufficient condition for the ICI removal. In this way, the proposed GFDM system is able to eliminate the effects of both the ISI and ICI. Furthermore, we investigate the prototype filter structures of the proposed GFDM system transformed by pre-processing and post-processing. We verify that the changed prototype filter structures are able to insert pilot symbols that are orthogonal to data symbols. Hence, the pilot symbols for channel estimation can be clearly observed. Simulation results demonstrate that the proposed system has better BER performance than conventional GFDM systems when the channel estimation process is considered. 
URL : https://ieeexplore.ieee.org/document/844...uthoralert 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Wireless Commun.] Jinkyo Jeong, Yosub Park, Sungwoo Weon, Jintae Kim, Sooyong Choi, and Daesik Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel estimation", IEEE Trans. on Wireless Comm., Aug. 2018 Published  2018-08 
1 [IEEE Commun. Lett.] Yosub Park, Jihaeng Heo, and Daesik Hong, "Spectral Efficiency Analysis of Ultra-Dense Small Cell Networks with Heterogeneous Channel Estimation Capabilities", IEEE Comm. Letters, Apr. 2017 file Published  2017-04