OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Resource Allocation Spectrum Sensing Neural Networks Full duplex Stochastic Geometry Equalizer Bi-Directional Feedback Energy Harvesting Heterogeneous Networks Femtocell Device-to-Device (D2D) Idle cells Cross-link interference FBMC Spectral efficiency Cell Search SINR mismatch problem NOMA Ultra-dense small cell networks HetNet interference management Dynamic TDD outage probability selection diversity achievable sum rate bursty traffic model Cognitive relay networks mode selection multi-spectral 5G Complexity Singular Vale Decomposition OQAM tabu-search Filtered OFDM TDD configuration flexible duplex Handoff GFDM Heterogeneous channel estimation capability self-interference cancellation in-band full-duplex system Channel estimation error coexistence CP-OFDM MU-MIMO automatic repeat request (ARQ) Two-way communications UWB full-duplex relay full-duplex cellular Simultaneous Sensing and Transmission Correlated MIMO transmission capacity (TC) sensing duration Bi-directional full-duplex Vehicle-to-Vehicle prototype filter pilot signal Coexistence scenarios resource size control Vehicle-to-vehicle communication link reliability interference to noise ratio eigen decomposition TS-W-OFDM Resource management Cooperative systems LTE-based V2V Aggregate interference time-frequency efficiency mixed numerology Windowing Reliability C-V2V Asynchronous Transmission Full-duplex Computation offloading Grant-free Transmission Preamble full-spreading NOMA massive connectivity Edge computing Multiple access MLP Deep learning Railway Mobility interference mitigation HST non-orthogonal multiple access
Status : Published 
Date : 2020-07 
Title : Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-link Interference Mitigation 
Authors : Hyejin Kim,Jintae Kim, and Daesik Hong 
Journal : IEEE Comm. Surveys & Tutorials 
Abstract : Dynamic time division duplex (D-TDD) dynamically allocates the transmission directions for traffic adaptation in each cell. D-TDD systems are receiving a lot of attention because they can reduce latency and increase spectrum utilization via flexible and dynamic duplex operation in 5G New Radio (NR). However, the advantages of the D-TDD system are difficult to fully utilize due to the cross-link interference (CLI) arising from the use of different transmission directions between adjacent cells. This paper is a survey of the research from academia and the standardization efforts being ndertaken to solve this CLI problem and make the D-TDD system a reality. Specifically, we categorize and present the approaches to mitigating CLI according to operational principles. Furthermore, we present the signaling necessary to apply the CLI mitigation schemes. We also present information-theoretic performance analysis of D-TDD systems in various environments. As topics for future works, we discuss the research challenges and opportunities associated with the CLI mitigation schemes and signaling design in a variety of environments. This survey is recommended for those who are in the initial stage of studying D-TDD systems and those who wish to develop a more feasible D-TDD system as a baseline for reviewing the research flow and standardization trends surrounding D-TDD systems and to identify areas of focus for future works. 
URL : https://ieeexplore.ieee.org/document/9139384 

.

List of Articles
No.
Status Datesort
» [IEEE Comm. Surveys & Turotials] Hyejin Kim, Jintae Kim, and Daesik Hong, "Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-Link Interference Mitigation," in IEEE Communications Surveys & Tutorials, Fourthquarter 2020 Published  2020-07 
1 [IEEE Trans. Wireless Commun.] Kwonjong Lee, Yosub Park, Minsoo Na, Hanho Wang, and Daesik Hong, Aligned Reverse Frame Structure for Interference Mitigation in Dynamic TDD Systems", IEEE Trans. on Wireless Comm., Jul. 2017 Published  2017-07