Spectrum Sensing 6G Full duplex Cognitive Radio OFDM Idle cells FBMC Energy Harvesting Ultra-dense small cell networks Bi-Directional stochastic geometry interference management Asynchronous Transmission SINR mismatch problem HetNet Dynamic TDD NOMA Cross-link interference Spectral efficiency bursty traffic model mode selection Device-to-Device (D2D) OQAM Channel estimation error multi-spectral Ultra-dense small cell Heterogeneous channel estimation capability synchronization Bi-directional full-duplex Preamble Intentional frequency offset (IFO) Asynchronism Shortened TTI Deep learning MLP Vehicle-to-vehicle communication Low Earth orbits (LEO) satellite Railway Simultaneous Sensing and Transmission full-duplex relay Cellular networks Latency selection diversity Cognitive relay networks MIMO K-S statistics Long Term Evolution-Advanced 5G networks interference coordination full-duplex cellular interference mitigation sensing duration Correlated MIMO outage probability transmission capacity (TC) Two-way communications self-interference cancellation in-band full-duplex system automatic repeat request (ARQ) achievable sum rate Coexisting network interference to noise ratio link reliability tabu-search massive connectivity resource size control Coexistence scenarios Resource management spectrum sharing mixed numerology Multiple input multiple output (MIMO) New radio non-terrestrial network (NR-NTN) full-spreading NOMA Intentional time offset LTE-based V2V CP-OFDM Singular Vale Decomposition non-orthogonal multiple access Non-orthogonal multiple access (NOMA) Complexity Cooperative systems Reliability B5G Multiple access Cell-free HST Mobility flexible duplex 5G Asynchronous non-orthogonal multiple access (NOMA) Edge computing Full-duplex Filtered OFDM Vehicle-to-Vehicle C-V2V Grant-free Transmission Sub-band filtering Computation offloading TDD configuration Degree of freedom (DoF) Satellite communication
Status : Published 
Date : 2020-11 
Title : A New Non-Orthogonal Transceiver for Asynchronous Grant-Free Transmission Systems 
Authors : Soohyun Kim, Jeeyeon Kim, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : The grant-free non-orthogonal multiple access (GF-NOMA) system, in which users autonomously transmit uplink data signals without carrying out a complicated random access process, offers significant advantages for increasing the efficiency of resource usage with low signaling overhead. In the proposed GF-NOMA system, since the collision resolution process is omitted and resources are not pre-assigned to users, multiple users may use same resource, without the base station (BS) being able to identify these collided users. In addition, in the absence of the UL synchronization procedure generally performed in the random access process, multiple users’ signals are received asynchronously. To solve these problems, we have developed a new transceiver structure for the GF-NOMA system consisting of a secondary preamble and a multiuser-multisymbol (MUMS) detector. The purpose of the secondary preamble is to successfully detect user access and estimate channel information even when no collision resolution process is being performed. The MUMS receiver is then proposed as a way to effectively mitigate the severe interference caused by the asynchronous transmission. Simulation results show that the proposed preamble structure and the receiver structure are superior to the conventional schemes. Furthermore, we show that the GF-NOMA system with the proposed transceiver structure achieves much better performance than other GF-NOMA systems in terms of reliability and successfully detected bits. 
URL : https://ieeexplore.ieee.org/document/9262029 

 .

List of Articles
No.
Status Datesort
» [IEEE Trans. Wireless Commun.] Soohyun Kim, Jeeyeon Kim, and Daesik Hong, "A New Non-Orthogonal Transceiver for Asynchronous Grant-Free Transmission Systems," in IEEE Transactions on Wireless Communications, March 2021 Published  2020-11 
1 [IEEE Trans. Wireless Commun.] Jaeyoung Choi, Beomju Kim, Kwonjong Lee, and Daesik Hong, "A Transceiver Design for Spectrum Sharing in Mixed Numerology Environments", IEEE Trans. on Wireless Comm., Mar. 2019 Published  2019-03