OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Neural Networks Spectrum Sensing Full duplex Resource Allocation Stochastic Geometry Equalizer Feedback Bi-Directional Energy Harvesting Femtocell Heterogeneous Networks Device-to-Device (D2D) Cell Search FBMC HetNet Idle cells Ultra-dense small cell networks Spectral efficiency SINR mismatch problem automatic repeat request (ARQ) in-band full-duplex system Two-way communications transmission capacity (TC) Correlated MIMO sensing duration self-interference cancellation Simultaneous Sensing and Transmission full-duplex cellular multi-spectral beamforming UWB achievable sum rate outage probability Cognitive relay networks selection diversity full-duplex relay Latency Vehicular and wireless technologies Asynchronized system Cross-link interference Cellular networks coexistence Channel estimation error Ultra-dense small cell Shortened TTI UL grant free NOMA mode selection Bi-directional full-duplex OQAM Link adaptation Iterative decoder LTE-TDD Dynamic TDD bursty traffic model Filtered OFDM MIMO singular value decomposition Time spreading K-S statistics interference coordination Vehicle-to-vehicle communication eigen decomposition 5G networks GFDM MU-MIMO TS-W-OFDM prototype filter pilot signal Windowing time-frequency efficiency Long Term Evolution-Advanced Aggregate interference LTE-based V2V Resource management Coexistence scenarios resource size control interference to noise ratio interference management mixed numerology Reliability Cooperative systems link reliability C-V2V non-orthogonal multiple access full-spreading NOMA massive connectivity Complexity CP-OFDM Vehicle-to-Vehicle Singular Vale Decomposition tabu-search
Status : Published 
Date : 2018-10 
Title : Resource Size Control for Reliability Improvement in Cellular-based V2V Communication 
Authors : Yosub Park, Taehyung Kim, and Daesik Hong 
Journal : IEEE Transactions on Vehicular Technology 
Abstract : In vehicle-to-vehicle (V2V) communication, link reliability has been regarded as an important performance metric, especially for safety-critical broadcast services. In this paper, we analyze the link reliability of the centralized mode (Mode 3) for long-term evolution (LTE)-based V2V (LTE-V2V) from the PHY/MAC perspectives. Moreover, we derive the statistical distribution of the interference distance and interference to noise ratio (INR) for LTE-V2V. Based on this analytical framework, we propose a resource size control (RSC) method for improving link reliability. The proposed RSC adapts the resource size according to the macroscopic network parameters such as vehicle density, communication range, and message size. Numerical results show that the proposed method improves link reliability compared with the fixed resource size setting in a highway scenario. Moreover, it is observed that larger-sized resources are preferred when the vehicle density decreases, the message size increases, or the communication range decreases. 
URL : https://ieeexplore.ieee.org/document/852...uthoralert 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Veh. Technol.] Yosub Park, Taehyung Kim, and Daesik Hong, "Resource Size Control for Reliability Improvement in Cellular-based V2V Communication", IEEE Trans. Veh. Technol., Oct. 2018 file Published  2018-10