OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Resource Allocation Spectrum Sensing Neural Networks Full duplex Stochastic Geometry Equalizer Bi-Directional Feedback Energy Harvesting Heterogeneous Networks Femtocell Device-to-Device (D2D) Idle cells Cross-link interference FBMC Spectral efficiency Cell Search SINR mismatch problem NOMA Ultra-dense small cell networks HetNet interference management Dynamic TDD outage probability selection diversity achievable sum rate bursty traffic model Cognitive relay networks mode selection multi-spectral 5G Complexity Singular Vale Decomposition OQAM tabu-search Filtered OFDM TDD configuration flexible duplex Handoff GFDM Heterogeneous channel estimation capability self-interference cancellation in-band full-duplex system Channel estimation error coexistence CP-OFDM MU-MIMO automatic repeat request (ARQ) Two-way communications UWB full-duplex relay full-duplex cellular Simultaneous Sensing and Transmission Correlated MIMO transmission capacity (TC) sensing duration Bi-directional full-duplex Vehicle-to-Vehicle prototype filter pilot signal Coexistence scenarios resource size control Vehicle-to-vehicle communication link reliability interference to noise ratio eigen decomposition TS-W-OFDM Resource management Cooperative systems LTE-based V2V Aggregate interference time-frequency efficiency mixed numerology Windowing Reliability C-V2V Asynchronous Transmission Full-duplex Computation offloading Grant-free Transmission Preamble full-spreading NOMA massive connectivity Edge computing Multiple access MLP Deep learning Railway Mobility interference mitigation HST non-orthogonal multiple access
Status : Published 
Date : 2018-10 
Title : Resource Size Control for Reliability Improvement in Cellular-based V2V Communication 
Authors : Yosub Park, Taehyung Kim, and Daesik Hong 
Journal : IEEE Transactions on Vehicular Technology 
Abstract : In vehicle-to-vehicle (V2V) communication, link reliability has been regarded as an important performance metric, especially for safety-critical broadcast services. In this paper, we analyze the link reliability of the centralized mode (Mode 3) for long-term evolution (LTE)-based V2V (LTE-V2V) from the PHY/MAC perspectives. Moreover, we derive the statistical distribution of the interference distance and interference to noise ratio (INR) for LTE-V2V. Based on this analytical framework, we propose a resource size control (RSC) method for improving link reliability. The proposed RSC adapts the resource size according to the macroscopic network parameters such as vehicle density, communication range, and message size. Numerical results show that the proposed method improves link reliability compared with the fixed resource size setting in a highway scenario. Moreover, it is observed that larger-sized resources are preferred when the vehicle density decreases, the message size increases, or the communication range decreases. 
URL : https://ieeexplore.ieee.org/document/852...uthoralert 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Veh. Technol.] Yosub Park, Taehyung Kim, and Daesik Hong, "Resource Size Control for Reliability Improvement in Cellular-based V2V Communication", IEEE Trans. Veh. Technol., Oct. 2018 file Published  2018-10