OFDM
Multiple Antennas
Cognitive Radio
Relay
CDMA
Synchronization
Channel Estimation
Spectrum Sharing
Interference Cancellation
Full duplex
Spectrum Sensing
Resource Allocation
Neural Networks
Stochastic Geometry
Equalizer
Bi-Directional
Feedback
Femtocell
Energy Harvesting
Heterogeneous Networks
Device-to-Device (D2D)
Cross-link interference
Cell Search
Idle cells
NOMA
HetNet
Ultra-dense small cell networks
Spectral efficiency
FBMC
SINR mismatch problem
Dynamic TDD
interference management
Sub-band filtering
Mobility
eigen decomposition
outage probability
Railway
selection diversity
Handoff
Asynchronous Transmission
flexible duplex
5G
achievable sum rate
interference mitigation
Preamble
Deep learning
Grant-free Transmission
MLP
in-band full-duplex system
sensing duration
Correlated MIMO
Simultaneous Sensing and Transmission
transmission capacity (TC)
Two-way communications
Filtered OFDM
automatic repeat request (ARQ)
UWB
full-duplex cellular
OQAM
bursty traffic model
mode selection
Bi-directional full-duplex
Heterogeneous channel estimation capability
Cognitive relay networks
Channel estimation error
multi-spectral
pilot signal
resource size control
interference to noise ratio
link reliability
Coexistence scenarios
mixed numerology
Cooperative systems
Resource management
LTE-based V2V
Vehicle-to-vehicle communication
CP-OFDM
full-spreading NOMA
massive connectivity
non-orthogonal multiple access
Singular Vale Decomposition
prototype filter
Vehicle-to-Vehicle
Reliability
C-V2V
Intentional frequency offset (IFO)
B5G
Multiple access
Asynchronism
Degree of freedom (DoF)
Asynchronous non-orthogonal multiple access (NOMA)
TDD configuration
6G
Cell-free
tabu-search
Complexity
Computation offloading
Full-duplex
Coexisting network
Edge computing
HST
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Hyunkee Min, Jemin Lee, Sungsoo Park, and Daesik Hong, "Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks" IEEE Trans. Wireless Comm., Dec 2011
[IEEE Trans. Wireless Commun.]
조회 58419
Status : | Published |
---|---|
Date : | 2011-12 |
Title : | Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks |
Authors : | Hyunkee Min, Jemin Lee, Sungsoo Park and Daesik Hong |
Journal : | IEEE Transactions on Wireless Communications |
Abstract : | A new interference management strategy is proposed to enhance the overall capacity of cellular networks (CNs) and device-to-device (D2D) systems. We consider M out of K cellular user equipments (CUEs) and one D2D pair exploiting the same resources in the uplink (UL) period under the assumption of M multiple antennas at the base station (BS). First, we use the conventional mechanism which limits the maximum transmit power of the D2D transmitter so as not to generate harmful interference from D2D systems to CNs. Second, we propose a D-interference limited area (ILA) control scheme to manage interference from CNs to D2D systems. The method does not allow the coexistence (i.e., use of the same resources) of CUEs and a D2D pair if the CUEs are located in the D-ILA defined as the area in which the interference to signal ratio (ISR) at the D2D receiver is greater than the predetermined threshold, D. Next, we analyze the coverage of the D-ILA and derive the lower bound of the ergodic capacity as a closed form. Numerical results show that the D-ILA based D2D gain is much greater than the conventional D2D gain, whereas the capacity loss to the CNs caused by using the D-ILA is negligibly small. |
URL : | http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6047553 |
Download : | http://mirinae.yonsei.ac.kr/?module=file...53359d8e35 |
Hyunkee Min; Jemin Lee; Sungsoo Park; Daesik Hong; , "Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks," Wireless Communications, IEEE Transactions on , vol.10, no.12, pp.3995-4000, December 2011
doi: 10.1109/TWC.2011.100611.101684
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6047553&isnumber=6107468
doi: 10.1109/TWC.2011.100611.101684
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6047553&isnumber=6107468
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
카테고리
- 전체(47)
- [IEEE J. Sel. Areas Commun.] (1)
- [IEEE Commun. Mag.] (2)
- [IEEE Trans. Commun.] (7)
- [IEEE Commun. Lett.] (16)
- [IEEE Trans. Wireless Commun.] (47)
- [IEEE Wireless Commun. Mag.] (1)
- [IEEE Wireless Commun. Lett.] (4)
- [IEEE Trans. Veh. Technol.] (29)
- [IEEE Trans. Signal Process.] (1)
- [IEEE Trans. Broadcast.] (1)
- [IEEE Trans. Magn.] (8)
- [IEEE Trans. Neural Netw.] (3)
- [IEEE Trans. Ind. Electron.] (1)
- [IEEE Trans. Consum. Electron.] (1)
- [IEEE Signal Process. Lett.] (9)
- [Electron. Lett.] (5)
- [IEICE Trans. Commun.] (14)
- [IEICE Trans. Fund.] (1)
- [Neuro Computing] (1)
- [Optical Engineering] (2)
- [IEEE Comm. Surveys & Turotials] (2)
- [IEEE Access] (5)
- [Other Journals] (9)