OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection B5G multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G Cell-free Coexisting network Multiple access Railway CP-OFDM MLP Edge computing Full-duplex Mobility non-orthogonal multiple access HST interference mitigation Computation offloading TDD configuration Singular Vale Decomposition
Status : Published 
Date : 1999-02 
Title : Equalization techniques using neural networks for digital versatile disk-read-only memory systems 
Authors : Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You, and Daesik Hong 
Journal : Optical Engineering 
Abstract : Several equalizers are applied to digital versatile disk–read-only memory (DVD-ROM) systems. As a result of an imperfect writing process, nonlinear distortion may be generated in the replay signal. Neural equalizers, which have strong nonlinear mapping capabilities, are applied to the system to compensate for the nonlinear distortion. We perform computer simulations for two systems: a DVD-ROM system with and without run-length-limited (RLL) modulation code. Nonlinear distortion such as domain bloom is the dominant interference of the channel in a DVD-ROM system with RLL code because this code reduces the linear intersymbol interference (ISI). Thus the experimental results with RLL code show that the signal-to-noise ratio (SNR) gain of equalizers using neural networks over conventional equalizers increases in proportion to the nonlinearity of the DVD-ROM channel. When RLL is not used, however, linear and nonlinear ISI is the dominant interference of a DVD-ROM channel. Therefore equalizers with a decision-feedback section in a DVD-ROM system with RLL code outperform equalizers without a decision-feedback section in eliminating ISI. Consequently among the equalizers in our computer simulations, the neural decision-feedback equalizer (NDFE) showed the best bit error rate (BER) performance. © 1999 Society of Photo-Optical Instrumentation Engineers. 
URL : http://spiedigitallibrary.org/oe/resourc...i2/p256_s1 

Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You and Daesik Hong, "Equalization techniques using neural networks for digital versatile disk–read-only memory systems", Opt. Eng. 38, 256 (1999); http://dx.doi.org/10.1117/1.602084

List of Articles
No.
Statussort Date
2 [Optical Engineering] Hangyu Cho, Jonghoe An, Sunghwan Ong and Daesik Hong , "Partial response maximum-likelihood system and crosstalk cancellation method for high-density optical recording", Optical Eng., Aug 2001 Published  2001-08 
» [Optical Engineering] Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You, and Daesik Hong, "Equalization techniques using neural networks for digital versatile disk-read-only memory systems", Optical Eng., Feb 1999 Published  1999-02