OFDM
Multiple Antennas
Cognitive Radio
Relay
CDMA
Synchronization
Channel Estimation
Spectrum Sharing
Interference Cancellation
Full duplex
Spectrum Sensing
Resource Allocation
Neural Networks
Stochastic Geometry
Equalizer
Bi-Directional
Feedback
Femtocell
Energy Harvesting
Heterogeneous Networks
Device-to-Device (D2D)
Cross-link interference
Cell Search
Idle cells
NOMA
HetNet
Ultra-dense small cell networks
Spectral efficiency
FBMC
SINR mismatch problem
Dynamic TDD
interference management
Sub-band filtering
Mobility
eigen decomposition
outage probability
Railway
selection diversity
Handoff
Asynchronous Transmission
flexible duplex
5G
achievable sum rate
interference mitigation
Preamble
Deep learning
Grant-free Transmission
MLP
in-band full-duplex system
sensing duration
Correlated MIMO
Simultaneous Sensing and Transmission
transmission capacity (TC)
Two-way communications
Filtered OFDM
automatic repeat request (ARQ)
UWB
full-duplex cellular
OQAM
bursty traffic model
mode selection
Bi-directional full-duplex
Heterogeneous channel estimation capability
Cognitive relay networks
Channel estimation error
multi-spectral
pilot signal
resource size control
interference to noise ratio
link reliability
Coexistence scenarios
mixed numerology
Cooperative systems
Resource management
LTE-based V2V
Vehicle-to-vehicle communication
CP-OFDM
full-spreading NOMA
massive connectivity
non-orthogonal multiple access
Singular Vale Decomposition
prototype filter
Vehicle-to-Vehicle
Reliability
C-V2V
Intentional frequency offset (IFO)
B5G
Multiple access
Asynchronism
Degree of freedom (DoF)
Asynchronous non-orthogonal multiple access (NOMA)
TDD configuration
6G
Cell-free
tabu-search
Complexity
Computation offloading
Full-duplex
Coexisting network
Edge computing
HST
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You, and Daesik Hong, "Equalization techniques using neural networks for digital versatile disk-read-only memory systems", Optical Eng., Feb 1999
[Optical Engineering]
조회 31898
Status : | Published |
---|---|
Date : | 1999-02 |
Title : | Equalization techniques using neural networks for digital versatile disk-read-only memory systems |
Authors : | Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You, and Daesik Hong |
Journal : | Optical Engineering |
Abstract : | Several equalizers are applied to digital versatile disk–read-only memory (DVD-ROM) systems. As a result of an imperfect writing process, nonlinear distortion may be generated in the replay signal. Neural equalizers, which have strong nonlinear mapping capabilities, are applied to the system to compensate for the nonlinear distortion. We perform computer simulations for two systems: a DVD-ROM system with and without run-length-limited (RLL) modulation code. Nonlinear distortion such as domain bloom is the dominant interference of the channel in a DVD-ROM system with RLL code because this code reduces the linear intersymbol interference (ISI). Thus the experimental results with RLL code show that the signal-to-noise ratio (SNR) gain of equalizers using neural networks over conventional equalizers increases in proportion to the nonlinearity of the DVD-ROM channel. When RLL is not used, however, linear and nonlinear ISI is the dominant interference of a DVD-ROM channel. Therefore equalizers with a decision-feedback section in a DVD-ROM system with RLL code outperform equalizers without a decision-feedback section in eliminating ISI. Consequently among the equalizers in our computer simulations, the neural decision-feedback equalizer (NDFE) showed the best bit error rate (BER) performance. © 1999 Society of Photo-Optical Instrumentation Engineers. |
URL : | http://spiedigitallibrary.org/oe/resourc...i2/p256_s1 |
Kyunggoo Lee, Sooyong Choi, Sunghwan Ong, Cheolwoo You and Daesik Hong, "Equalization techniques using neural networks for digital versatile disk–read-only memory systems", Opt. Eng. 38, 256 (1999); http://dx.doi.org/10.1117/1.602084
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
-
2023.06 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
카테고리
- 전체(170)
- [IEEE J. Sel. Areas Commun.] (1)
- [IEEE Commun. Mag.] (2)
- [IEEE Trans. Commun.] (7)
- [IEEE Commun. Lett.] (16)
- [IEEE Trans. Wireless Commun.] (47)
- [IEEE Wireless Commun. Mag.] (1)
- [IEEE Wireless Commun. Lett.] (4)
- [IEEE Trans. Veh. Technol.] (29)
- [IEEE Trans. Signal Process.] (1)
- [IEEE Trans. Broadcast.] (1)
- [IEEE Trans. Magn.] (8)
- [IEEE Trans. Neural Netw.] (3)
- [IEEE Trans. Ind. Electron.] (1)
- [IEEE Trans. Consum. Electron.] (1)
- [IEEE Signal Process. Lett.] (9)
- [Electron. Lett.] (5)
- [IEICE Trans. Commun.] (14)
- [IEICE Trans. Fund.] (1)
- [Neuro Computing] (1)
- [Optical Engineering] (2)
- [IEEE Comm. Surveys & Turotials] (2)
- [IEEE Access] (5)
- [Other Journals] (9)