OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search Idle cells NOMA HetNet Ultra-dense small cell networks Spectral efficiency FBMC SINR mismatch problem Dynamic TDD interference management Sub-band filtering Mobility eigen decomposition outage probability Railway selection diversity Handoff Asynchronous Transmission flexible duplex 5G achievable sum rate interference mitigation Preamble Deep learning Grant-free Transmission MLP in-band full-duplex system sensing duration Correlated MIMO Simultaneous Sensing and Transmission transmission capacity (TC) Two-way communications Filtered OFDM automatic repeat request (ARQ) UWB full-duplex cellular OQAM bursty traffic model mode selection Bi-directional full-duplex Heterogeneous channel estimation capability Cognitive relay networks Channel estimation error multi-spectral pilot signal resource size control interference to noise ratio link reliability Coexistence scenarios mixed numerology Cooperative systems Resource management LTE-based V2V Vehicle-to-vehicle communication CP-OFDM full-spreading NOMA massive connectivity non-orthogonal multiple access Singular Vale Decomposition prototype filter Vehicle-to-Vehicle Reliability C-V2V Intentional frequency offset (IFO) B5G Multiple access Asynchronism Degree of freedom (DoF) Asynchronous non-orthogonal multiple access (NOMA) TDD configuration 6G Cell-free tabu-search Complexity Computation offloading Full-duplex Coexisting network Edge computing HST
Status : Published 
Date : 2021-10 
Title : Resource Configuration for Full-duplex-aided Multiple-Access Edge Computation Offloading 
Authors : Hakkeon Lee, Jaeyoung Choi, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : Multiple-access edge computation offloading (MECO) systems have been highlighted as a solution for extending the battery life and computation capability of mobile devices. However, in scenarios where information data and computation offloading (CO) data coexist, CO users and information users affect each other. It means that the communication resources for information data transmission are inevitably reduced by the communication resources allocated for CO in the conventional half-duplex (HD) based systems. Hence, improving the spectral efficiency of MECO systems in coexistence scenarios is essential, and we investigate a full-duplex (FD)-aided MECO (FD-MECO) system. A step-wise resource configuration is proposed to improve the performance of computation offloading under the information data rate constraint. The main idea is to improve spectral efficiency by maximizing the opportunity of operating in FD mode. By comparing all the communication phases in FD-MECO systems, the proposed resource configuration maximizes the amount of delivered CO data while guaranteeing the required information data rate. The simulation results show that FD-MECO systems with the proposed resource configuration always outperform HD-MECO systems. 
URL : https://ieeexplore.ieee.org/document/955...uthoralert 

.

List of Articles
No.
Statussort Date
» [IEEE Trans. Wireless Commun.] Hakkeon Lee, Jaeyoung Choi, and Daesik Hong, "Resource Configuration for Full-duplex-aided Multiple-Access Edge Computation Offloading" in IEEE Transactions on Wireless Communications, September 2021 Published  2021-10 
2 [IEEE Access] Insik Jung, Hyunsoo Kim, Jinkyo Jung, Sooyong Choi, and Daesik Hong, "An Enhanced Tabu Search based Receiver for Full-spreading NOMA Systems", IEEE Access, Oct. 2019 Published  2019-10 
1 [IEEE Trans. Wireless Commun.] Joohyun Son, Hakkeon Lee, Insik Jung, and Daesik Hong, "Exploiting Intentional Frequency Offset in NOMA-OFDM Systems: From Basic to Practical", IEEE Transactions on Wireless Communications, 2023 Accepted  2023-01