Spectrum Sensing 6G Full duplex Cognitive Radio OFDM Idle cells FBMC Energy Harvesting Ultra-dense small cell networks Bi-Directional stochastic geometry interference management Asynchronous Transmission SINR mismatch problem HetNet Dynamic TDD NOMA Cross-link interference Spectral efficiency bursty traffic model mode selection Device-to-Device (D2D) OQAM Channel estimation error multi-spectral Ultra-dense small cell Heterogeneous channel estimation capability synchronization Bi-directional full-duplex Preamble Intentional frequency offset (IFO) Asynchronism Shortened TTI Deep learning MLP Vehicle-to-vehicle communication Low Earth orbits (LEO) satellite Railway Simultaneous Sensing and Transmission full-duplex relay Cellular networks Latency selection diversity Cognitive relay networks MIMO K-S statistics Long Term Evolution-Advanced 5G networks interference coordination full-duplex cellular interference mitigation sensing duration Correlated MIMO outage probability transmission capacity (TC) Two-way communications self-interference cancellation in-band full-duplex system automatic repeat request (ARQ) achievable sum rate Coexisting network interference to noise ratio link reliability tabu-search massive connectivity resource size control Coexistence scenarios Resource management spectrum sharing mixed numerology Multiple input multiple output (MIMO) New radio non-terrestrial network (NR-NTN) full-spreading NOMA Intentional time offset LTE-based V2V CP-OFDM Singular Vale Decomposition non-orthogonal multiple access Non-orthogonal multiple access (NOMA) Complexity Cooperative systems Reliability B5G Multiple access Cell-free HST Mobility flexible duplex 5G Asynchronous non-orthogonal multiple access (NOMA) Edge computing Full-duplex Filtered OFDM Vehicle-to-Vehicle C-V2V Grant-free Transmission Sub-band filtering Computation offloading TDD configuration Degree of freedom (DoF) Satellite communication
Status : Published 
Date : 2023-02 
Title : Exploiting Intentional Frequency Offset in NOMA-OFDM Systems: From Basic to Practical 
Authors : Joohyun Son, Hakkeon Lee, Insik Jung, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : This paper investigates an asynchronous non-orthogonal multiple access (NOMA) scheme that intentionally generates a frequency offset between users in the orthogonal frequency division multiplexing (OFDM) system. We begin by proposing frequency asynchronous NOMA (FA-NOMA) as a basic system. The characteristics and challenges of FA-NOMA are then described. However, the challenges hinder the utilization of FA-NOMA in a practical environment. To further improve and utilize FA-NOMA in practice, we propose a novel sub-band filtered FA-NOMA (SBFA-NOMA) system. We also provide a new transceiver to implement SBFA-NOMA. Simulation results show that the proposed system can achieve performance improvement via gains in received power and degrees of freedom (DoF) compared to the power-domain NOMA (P-NOMA) system. 
URL : https://ieeexplore.ieee.org/document/10056854 

.

List of Articles
No.
Statussort Date
» [IEEE Trans. Wireless Commun.] Joohyun Son, Hakkeon Lee, Insik Jung, and Daesik Hong, "Exploiting Intentional Frequency Offset in NOMA-OFDM Systems: From Basic to Practical", IEEE Transactions on Wireless Communications, 2023 Published  2023-02 
1 [IEEE Wireless Commun. Lett.] Hakkeon Lee, Insik Jung, Jehyun Heo, and Daesik Hong, "Exploiting Intentional Time-domain Offset in Downlink Multicarrier NOMA systems", IEEE Wireless Communications Letters, Apr. 2021 Published  2021-04