OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection B5G multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G Cell-free Coexisting network Multiple access Railway CP-OFDM MLP Edge computing Full-duplex Mobility non-orthogonal multiple access HST interference mitigation Computation offloading TDD configuration Singular Vale Decomposition
Status : Published 
Date : 2019-10 
Title : A Low-complex SVD-based F-OFDM 
Authors : Hyejin Kim, Yosub Park, Jintae Kim, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : As an approach to reduce the computational complexity of Filtered-Orthogonal Frequency Division Multiplexing (F-OFDM), we removed restrictions on filter lengths in F-OFDM and then applied linear pre- and post-processing for a transmitter and receiver using the singular value decomposition (SVD) method in order to solve the data distortion caused by the use of filter lengths much shorter than the symbol duration. This new F-OFDM has been given the designation SVD-based F-OFDM (SF-OFDM). Numerical results show that SF-OFDM has much lower complexity than F-OFDM, especially when transmitting small numbers of resource blocks. SF-OFDM also has nearly the same bit error rate performance as conventional F-OFDM. Moreover, SF-OFDM retains a much lower out-of-band emission than cyclic prefix (CP)-OFDM, while at the same time having a similar level of peak to average power ratio compared to CP-OFDM. 
URL : https://ieeexplore.ieee.org/document/8909371 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Wireless Commun.] Hyejin Kim, Yosub Park, Jintae Kim and Daesik Hong, "A Low-Complex SVD-Based F-OFDM," in IEEE Transactions on Wireless Communications, Feb. 2020 Published  2019-10