OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection B5G multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G Cell-free Coexisting network Multiple access Railway CP-OFDM MLP Edge computing Full-duplex Mobility non-orthogonal multiple access HST interference mitigation Computation offloading TDD configuration Singular Vale Decomposition
Status : Published 
Date : 2003-01 
Title : Multicarrier CDMA systems using time-domain and frequency-domain spreading codes 
Authors : Cheolwoo Yoo and Daesik Hong 
Journal : IEEE Transactions on Communications 
Abstract : For wideband code-division multiple-access systems, the paper introduces a multicarrier modulation scheme that performs the spreading simultaneously in the time and frequency domains. This scheme attains higher flexibility and spectrum efficiency because system parameters can be selected at will. The performance is compared with that of a single carrier RAKE system by calculating the probability of error over a frequency-selective Rayleigh fading channel. The proposed scheme outperforms the single carrier RAKE system if the system parameters are selected properly for given conditions, such as bandwidth and delay spread. 
URL : http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1181538 
You, C.W.; Hong, D.S.; , "Multicarrier CDMA systems using time-domain and frequency-domain spreading codes," Communications, IEEE Transactions on , vol.51, no.1, pp. 17- 21, Jan 2003
doi: 10.1109/TCOMM.2002.807630
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1181538&isnumber=26530
List of Articles
No.
Status Datesort
2 [IEEE Trans. Commun.] Kyunbyoung Ko, Myonghee Park and Daesik Hong, "Performance analysis of asynchronous MC-CDMA systems with a guard period in the form of a cyclic prefix", IEEE Trans. Comm., Feb 2006 Published  2006-02 
» [IEEE Trans. Commun.] Cheolwoo Yoo and Daesik Hong, "Multicarrier CDMA systems using time-domain and frequency-domain spreading codes", IEEE Trans. Comm., Jan 2003 Published  2003-01