OFDM
Multiple Antennas
Cognitive Radio
Relay
CDMA
Synchronization
Channel Estimation
Spectrum Sharing
Interference Cancellation
Full duplex
Spectrum Sensing
Resource Allocation
Neural Networks
Stochastic Geometry
Equalizer
Bi-Directional
Feedback
Femtocell
Energy Harvesting
Heterogeneous Networks
Device-to-Device (D2D)
Cross-link interference
Cell Search
Idle cells
NOMA
HetNet
Ultra-dense small cell networks
Spectral efficiency
FBMC
SINR mismatch problem
Dynamic TDD
interference management
Sub-band filtering
Mobility
eigen decomposition
outage probability
Railway
selection diversity
Handoff
Asynchronous Transmission
flexible duplex
5G
achievable sum rate
interference mitigation
Preamble
Deep learning
Grant-free Transmission
MLP
in-band full-duplex system
sensing duration
Correlated MIMO
Simultaneous Sensing and Transmission
transmission capacity (TC)
Two-way communications
Filtered OFDM
automatic repeat request (ARQ)
UWB
full-duplex cellular
OQAM
bursty traffic model
mode selection
Bi-directional full-duplex
Heterogeneous channel estimation capability
Cognitive relay networks
Channel estimation error
multi-spectral
pilot signal
resource size control
interference to noise ratio
link reliability
Coexistence scenarios
mixed numerology
Cooperative systems
Resource management
LTE-based V2V
Vehicle-to-vehicle communication
CP-OFDM
massive connectivity
tabu-search
full-spreading NOMA
Singular Vale Decomposition
prototype filter
Vehicle-to-Vehicle
Reliability
C-V2V
Intentional frequency offset (IFO)
Degree of freedom (DoF)
B5G
Asynchronism
Asynchronous non-orthogonal multiple access (NOMA)
TDD configuration
Computation offloading
Multiple access
6G
non-orthogonal multiple access
Complexity
Full-duplex
Edge computing
Cell-free
Coexisting network
HST
-
2023.09 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Taehyung Kim, Hyunsoo Kim, Sooyong Choi, and Daesik Hong, How Will Cell-Free Systems Be Deployed? in IEEE Communications Magazine, January 2022
[IEEE Commun. Mag.]
조회 3335
Status : | Published |
---|---|
Date : | 2022-04 |
Title : | How Will Cell-Free Systems Be Deployed? |
Authors : | Taehyung Kim, Hyunsoo Kim, Sooyong Choi, and Daesik Hong |
Journal : | IEEE Communications Magazine |
Abstract : | The cell-free system has recently been investigated as a way to achieve uniform communication performance over the 5G cellular system. However, deploying cell-free systems in commercial mobile networks is a challenging task. One major bottleneck is the need to install access points (AP) on a large scale. APs will be gradually introduced into the mobile system and will need to be compatible with the existing cellular system. As a solution, we propose a transitional system architecture for beyond 5G, where the cell-free system and the legacy cellular system coexist. We call the proposed system a cellfree and legacy coexistence network (CLCN). In this article, the discussion focuses on technical challenges, design considerations, and practical CLCN system layouts. Simulations confirm that the gradual installation of APs in legacy cellular systems can reduce the performance gap between users and improve the average spectral efficiency of the system. The results show that CLCN can provide users uniformly high performance, which has long been a challenge for cellular systems. |
URL : | https://ieeexplore.ieee.org/document/9755280 |
.
-
2023.09 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
-
2023.09 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
카테고리
- 전체(171)
- [IEEE J. Sel. Areas Commun.] (1)
- [IEEE Commun. Mag.] (2)
- [IEEE Trans. Commun.] (7)
- [IEEE Commun. Lett.] (16)
- [IEEE Trans. Wireless Commun.] (47)
- [IEEE Wireless Commun. Mag.] (1)
- [IEEE Wireless Commun. Lett.] (4)
- [IEEE Trans. Veh. Technol.] (29)
- [IEEE Trans. Signal Process.] (1)
- [IEEE Trans. Broadcast.] (1)
- [IEEE Trans. Magn.] (8)
- [IEEE Trans. Neural Netw.] (3)
- [IEEE Trans. Ind. Electron.] (1)
- [IEEE Trans. Consum. Electron.] (1)
- [IEEE Signal Process. Lett.] (9)
- [Electron. Lett.] (5)
- [IEICE Trans. Commun.] (14)
- [IEICE Trans. Fund.] (1)
- [Neuro Computing] (1)
- [Optical Engineering] (2)
- [IEEE Comm. Surveys & Turotials] (3)
- [IEEE Access] (5)
- [Other Journals] (9)