OFDM Multiple Antennas Cognitive Radio Relay Synchronization CDMA Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Neural Networks Resource Allocation Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Heterogeneous Networks Energy Harvesting Device-to-Device (D2D) Cell Search Spectral efficiency NOMA FBMC interference management Dynamic TDD Cross-link interference SINR mismatch problem HetNet Idle cells Ultra-dense small cell networks achievable sum rate outage probability multi-spectral full-duplex relay selection diversity bursty traffic model mode selection Handoff CP-OFDM non-orthogonal multiple access self-interference cancellation Singular Vale Decomposition interference mitigation full-duplex cellular interference coordination Cognitive relay networks Time spreading beamforming Link adaptation Heterogeneous channel estimation capability coexistence MU-MIMO full-spreading NOMA GFDM Bi-directional full-duplex OQAM sensing duration Correlated MIMO Simultaneous Sensing and Transmission transmission capacity (TC) Two-way communications in-band full-duplex system automatic repeat request (ARQ) UWB flexible duplex TS-W-OFDM Windowing time-frequency efficiency eigen decomposition pilot signal 5G networks prototype filter Aggregate interference Long Term Evolution-Advanced interference to noise ratio resource size control link reliability mixed numerology Vehicle-to-vehicle communication LTE-based V2V Coexistence scenarios Resource management Filtered OFDM Cooperative systems Complexity tabu-search Deep learning Reliability Vehicle-to-Vehicle C-V2V HST Mobility Preamble 5G Grant-free Transmission Asynchronous Transmission Railway MLP massive connectivity
Status : Published 
Date : 2019-09 
Title : Cooperative Superposed Transmission in Cellular-based V2V Systems 
Authors : Taehyung Kim, Yosub Park, Hyunsoo Kim,and Daesik Hong 
Journal : IEEE Transactions on Vehicular Technology 
Abstract : Vehicle-to-vehicle (V2V) communication is a critical 5G scenario demanding stringent safety requirements. As a way of ensuring safe packet exchange between vehicles in a V2V system, we propose a new cooperative transmission scheme employing a signal superposition technique from non-orthogonal multiple access (NOMA), which we call cooperative superposed transmission (CST). In the proposed CST, vehicle user equipments (VUEs) superpose other VUEs’ signals that they have received on to their own transmission signals. This allows them to retransmit other users’ V2V packets during their packet transmission. The result is high communication reliability because packets can be sent multiple times without intensifying interuser interference (IUI). We perform a theoretical analysis, then use it to derive a closed-form expression for the link reliability of the proposed CST. Based on this, a new power control and user pairing algorithm is designed to maximize reliability. Simulation results show that the proposed scheme achieves higher reliability and lower latency than the conventional transmission schemes used in cellular-V2V (C-V2V) systems. Moreover, the proposed CST guarantees high reliability in various road environments and system settings. 
URL : https://ieeexplore.ieee.org/document/8863432 
List of Articles
No.
Status Datesort
» [IEEE Trans. Veh. Technol.] Taehyung Kim, Yosub Park, Hyunsoo Kim,and Daesik Hong, "Cooperative Superposed Transmission in Cellular-based V2V Systems", IEEE Trans. Veh. Technol., Sep. 2019 Published  2019-09