OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Full duplex Spectrum Sensing Resource Allocation Neural Networks Stochastic Geometry Equalizer Bi-Directional Feedback Femtocell Energy Harvesting Heterogeneous Networks Device-to-Device (D2D) Cross-link interference Cell Search SINR mismatch problem Ultra-dense small cell networks HetNet Idle cells Spectral efficiency Dynamic TDD interference management NOMA FBMC selection diversity Handoff outage probability mode selection B5G multi-spectral achievable sum rate Grant-free Transmission Filtered OFDM tabu-search bursty traffic model flexible duplex 5G Asynchronous Transmission Preamble Deep learning Shortened TTI automatic repeat request (ARQ) Two-way communications transmission capacity (TC) in-band full-duplex system self-interference cancellation Complexity Ultra-dense small cell sensing duration Correlated MIMO Cognitive relay networks Heterogeneous channel estimation capability Bi-directional full-duplex full-duplex cellular full-duplex relay Simultaneous Sensing and Transmission UWB OQAM Windowing Vehicle-to-vehicle communication prototype filter pilot signal LTE-based V2V link reliability resource size control interference to noise ratio eigen decomposition TS-W-OFDM C-V2V massive connectivity Reliability Vehicle-to-Vehicle full-spreading NOMA Resource management Cooperative systems Coexistence scenarios mixed numerology 6G Cell-free Coexisting network Multiple access Railway CP-OFDM MLP Edge computing Full-duplex Mobility non-orthogonal multiple access HST interference mitigation Computation offloading TDD configuration Singular Vale Decomposition
Status : Published 
Date : 2021-10 
Title : Resource Configuration for Full-duplex-aided Multiple-Access Edge Computation Offloading 
Authors : Hakkeon Lee, Jaeyoung Choi, and Daesik Hong 
Journal : IEEE Transactions on Wireless Communications 
Abstract : Multiple-access edge computation offloading (MECO) systems have been highlighted as a solution for extending the battery life and computation capability of mobile devices. However, in scenarios where information data and computation offloading (CO) data coexist, CO users and information users affect each other. It means that the communication resources for information data transmission are inevitably reduced by the communication resources allocated for CO in the conventional half-duplex (HD) based systems. Hence, improving the spectral efficiency of MECO systems in coexistence scenarios is essential, and we investigate a full-duplex (FD)-aided MECO (FD-MECO) system. A step-wise resource configuration is proposed to improve the performance of computation offloading under the information data rate constraint. The main idea is to improve spectral efficiency by maximizing the opportunity of operating in FD mode. By comparing all the communication phases in FD-MECO systems, the proposed resource configuration maximizes the amount of delivered CO data while guaranteeing the required information data rate. The simulation results show that FD-MECO systems with the proposed resource configuration always outperform HD-MECO systems. 
URL : https://ieeexplore.ieee.org/document/955...uthoralert 

.

List of Articles
No.
Status Datesort
» [IEEE Trans. Wireless Commun.] Hakkeon Lee, Jaeyoung Choi, and Daesik Hong, "Resource Configuration for Full-duplex-aided Multiple-Access Edge Computation Offloading" in IEEE Transactions on Wireless Communications, September 2021 Published  2021-10 
1 [IEEE Access] Insik Jung, Hyunsoo Kim, Jinkyo Jung, Sooyong Choi, and Daesik Hong, "An Enhanced Tabu Search based Receiver for Full-spreading NOMA Systems", IEEE Access, Oct. 2019 Published  2019-10