OFDM Multiple Antennas Cognitive Radio Relay CDMA Synchronization Channel Estimation Spectrum Sharing Interference Cancellation Resource Allocation Spectrum Sensing Neural Networks Full duplex Stochastic Geometry Equalizer Bi-Directional Feedback Energy Harvesting Heterogeneous Networks Femtocell Device-to-Device (D2D) Idle cells Cross-link interference FBMC Spectral efficiency Cell Search SINR mismatch problem NOMA Ultra-dense small cell networks HetNet interference management Dynamic TDD outage probability selection diversity achievable sum rate bursty traffic model Cognitive relay networks mode selection multi-spectral 5G Complexity Singular Vale Decomposition OQAM tabu-search Filtered OFDM TDD configuration flexible duplex Handoff GFDM Heterogeneous channel estimation capability self-interference cancellation in-band full-duplex system Channel estimation error coexistence CP-OFDM MU-MIMO automatic repeat request (ARQ) Two-way communications UWB full-duplex relay full-duplex cellular Simultaneous Sensing and Transmission Correlated MIMO transmission capacity (TC) sensing duration Bi-directional full-duplex Vehicle-to-Vehicle prototype filter pilot signal Coexistence scenarios resource size control Vehicle-to-vehicle communication link reliability interference to noise ratio eigen decomposition TS-W-OFDM Resource management Cooperative systems LTE-based V2V Aggregate interference time-frequency efficiency mixed numerology Windowing Reliability C-V2V Asynchronous Transmission Full-duplex Computation offloading Grant-free Transmission Preamble full-spreading NOMA massive connectivity Edge computing Multiple access MLP Deep learning Railway Mobility interference mitigation HST non-orthogonal multiple access
Status : Published 
Date : 2016-01 
Title : Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model 
Authors : Joonki Kim, Seokjung Kim, Jonghyun Bang, and Daesik Hong 
Journal : IEEE Communications Letters 
Abstract : This paper proposes a new mode selection scheme to improve the overall packet rates for device-to-device (D2D) communications systems in the bursty traffic model. We consider three types of D2D modes, i.e., dedicated mode, cellular mode, and reuse mode. In the full-buffer traffic model, if all the uplink (UL) channels are occupied by cellular users, the dedicated and cellular modes are not available for D2D user equipments (DUEs) to choose. However, in bursty traffic model, the traffic load is time-varying and DUEs have the option to select the dedicated or cellular modes. To determine the best mode for a DUE in the bursty traffic, we propose a mode selection scheme which considers the traffic load for the bursty traffic model. Numerical results show that the proposed scheme achieves a remarkable enhancement in average end-to-end delay, dropping probability and packet rate. 
URL : http://ieeexplore.ieee.org/xpl/articleDe...ic%20Model 
Download : https://mirinae.yonsei.ac.kr/?module=fil...le_srl=179 

Kim, Joonki; Kim, Seokjung; Bang, Jonghyun; Hong, Daesik, "Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model", Communications Leters, IEEE, Jan 2016

doi: 10.1109/LCOMM.2016.2521371

keywords: {Device-to-Device Communication;mode selection;bursty traffic model}

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7390167

List of Articles
No.
Status Datesort
» [IEEE Commun. Lett.] Joonki Kim, Seokjung Kim, Jonghyun Bang, and Daesik Hong, "Adaptive Mode Selection in D2D Communications Considering the Bursty Traffic Model", IEEE Comm. Letters, Jan 2016 file Published  2016-01