OFDM
Relay
Cognitive Radio
Multiple Antennas
Resource Allocation
Full Duplex
Spectrum Sensing
Synchronization
Spectrum Sharing
Interference Cancellation
Channel Estimation
Feedback
Stochastic Geometry
Bi-directional
Energy Harvesting
Heterogeneous Networks
FBMC
HetNet
Equalization
relay networks
Ultra Low Power
TVWS
MIMO
interference
SC-FDMA
CDMA
Duplex
channel capacity
interference suppression
5G
Reliability
C-V2V
in-band full-duplex system
OCBT
CLI
body area networks
5G mobile communication
antenna arrays
NR positioning
health care
Resource sharing
Location-based
LTE-TDD
FS-NOMA
Power allocation
OTDOA
hybrid
control overhead
estimated position overlapping
resource block management
amplify and forward communication
power uncertainty
CoMP
quality of service
cellular radio
Rat-dependent positioning
telecommunication traffic
Handoff
Femtocell
inter user interference
UFMC
mode selection
GFDM
QAM
Zigbee
frame structure
Vehicular communication
Vehicle-to-vehicle communication
non-orthogonal multiple access
QR Factorization
Spatial capacity
LTE-based V2V
Number of training blocks
Communication range
user fairness
Mode 3
resource selection
distributed mode
maximum likelihood method
Metaheuristics
cross-link interference
Dynamic TDD
Uplink SCMA system
V2X
DQN
estimated position updating
—Device-to-device (D2D)
D-TDD
dynamic HetNet
indoor positioning
spectrum partitioning
- Computation offloading
multi-access edge computing
P-NOMA
partial overlap
Subband filtering
Multi-user Receiver
reinforcement learning
RSRP weighting
smart factory
-
2021.04 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Hyunsoo Kim, Jonghyun Bang, Sooyong Choi, and Daesik Hong, "Resource Block Management for Uplink UFMC Systems", IEEE WCNC 2016
[IEEE WCNC]
조회 24148
Status : | Presented |
---|---|
Date : | 2016-04 |
Title : | Block Management for Uplink UFMC Systems |
Authors : | Hyunsoo Kim, Jonghyun Bang, Sooyong Choi, and Daesik Hong |
Conference : | WCNC 2016 |
Abstract : | Filter-bank based multi-carrier systems have recently attracted lots of interest as a promising approach for the next generation wireless communication systems. Due to high complexity and long symbol duration, however, these systems need to evolve in a new multi-carrier technique, universalfiltered multi-carrier (UFMC). In conventional UFMC systems, a fixed size of resource block (RB) reduces the flexibility of spectrum utilization and leads to high computational complexity. This problem highlights the need for RB size control that will efficiently allocate frequency resource to satisfy users’ resource demand. In this paper, we propose a generalized UFMC system for uplink scenario. First, we analyze the impact of RB size on the UFMC spectrum utilization and compleixty. Then, we observe the effect of filter length on symbol error rate (SER). Based on these observation, the proposed UFMC system controls RB size and filter length according to users’ demand. Finally, we demonstrate that the proposed system tremendously improves throughput persub-carrier without SER performance degradation. |
URL : | http://. |
Download : | https://mirinae.yonsei.ac.kr/?module=fil...le_srl=343 |
.
-
2021.04 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
-
2021.04 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
카테고리
- 전체(253)
- [ICNN] (3)
- [ICEIC] (14)
- [ITC-CSCC] (11)
- [JTC-CSCC] (3)
- [IEEE ICASSP] (9)
- [IEEE ICC] (22)
- [IEEE ICCE] (1)
- [IEEE ICCS] (3)
- [IEEE ICOIN] (3)
- [IEEE ICONIP] (2)
- [IEEE IJCNN] (9)
- [IEEE INTERMAG] (8)
- [IEEE ISIT] (1)
- [IEEE GLOBECOM] (21)
- [IEEE MILCOM] (11)
- [IEEE PIMRC] (17)
- [IEEE VTC] (70)
- [IEEE WCNC] (8)
- [IEEE TENCON] (1)
- [IEEE CNCC] (1)
- [Other Conf. Papers] (35)